ON FOURIER SERIES WITH RESTRICTED COEFFICIENTS*

otto szász

1. Introduction. Consider a real-valued function $f(x)$, periodic with period 2π and Lebesgue integrable. Let

$$
\begin{equation*}
f(x) \sim \frac{a_{0}}{2}+\sum_{1}^{\infty}\left(a_{\nu} \cos \nu x+b_{\nu} \sin \nu x\right) \tag{1.1}
\end{equation*}
$$

be its Fourier series, and let $s_{0}=a_{0} / 2$,

$$
\begin{align*}
s_{n}(f ; x)=s_{n}=\frac{a_{0}}{2}+\sum_{1}^{n}\left(a_{\nu} \cos \nu x+b_{\nu} \sin \nu x\right) & \tag{1.2}\\
& n=1,2,3, \cdots,
\end{align*}
$$

be its partial sums. We shall mainly restrict ourselves to series satisfying the conditions

$$
\begin{equation*}
n a_{n} \geqq-p, \quad n b_{n} \geqq-p, \quad \text { for } \quad n=1,2,3, \cdots, \tag{1.3}
\end{equation*}
$$

where $p \geqq 0$. We shall in particular consider the following problem:
Suppose

$$
\begin{equation*}
-\mu \leqq f(x) \leqq \mu \quad \text { in } \quad-\pi<x<\pi \tag{1.4}
\end{equation*}
$$

then what is the best upper bound $C_{n}(\mu, p)$ for the partial sums $\left|s_{n}(f ; x)\right| \leqq C_{n}(\mu, p),(n \geqq 1)$, under the assumption (1.3)?

It is known that the sequence $\left\{C_{n}\right\}$ is bounded (cf. Szász [5], [6]); \dagger hence l.u.b. $C_{n}(\mu, p)=C(\mu, p)$ is finite. For $p=0$ the author [9] proved recently that

$$
\begin{equation*}
C(\mu, 0)<(2+4 / \pi) \mu<3.3 \mu \tag{1.5}
\end{equation*}
$$

for $p>0$ the sharpest estimates so far were given by Fekete [2] using a device of Paley and Fejér [1]. Fekete proved that

$$
\begin{equation*}
C(\mu, p)<5 \mu+6 p \tag{1.6}
\end{equation*}
$$

and also that

$$
\begin{equation*}
C(\mu, p)<5 \mu+8(\mu p)^{1 / 2} \tag{1.7}
\end{equation*}
$$

[^0]
[^0]: * Presented to the Society, April 9, 1938.
 \dagger See the list of references at the end of this paper.

