OTTO SZÁSZ

ON FOURIER SERIES WITH RESTRICTED COEFFICIENTS*

OTTO SZÁSZ

1. Introduction. Consider a real-valued function f(x), periodic with period 2π and Lebesgue integrable. Let

(1.1)
$$f(x) \sim \frac{a_0}{2} + \sum_{1}^{\infty} (a_{\nu} \cos \nu x + b_{\nu} \sin \nu x)$$

be its Fourier series, and let $s_0 = a_0/2$,

(1.2)
$$s_n(f; x) = s_n = \frac{a_0}{2} + \sum_{1}^{n} (a_\nu \cos \nu x + b_\nu \sin \nu x),$$

 $n=1,\,2,\,3,\,\cdots,$

be its partial sums. We shall mainly restrict ourselves to series satisfying the conditions

(1.3)
$$na_n \ge -p, \quad nb_n \ge -p, \quad \text{for} \quad n = 1, 2, 3, \cdots,$$

where $p \ge 0$. We shall in particular consider the following problem: Suppose

(1.4)
$$-\mu \leq f(x) \leq \mu \text{ in } -\pi < x < \pi;$$

then what is the best upper bound $C_n(\mu, p)$ for the partial sums $|s_n(f; x)| \leq C_n(\mu, p)$, $(n \geq 1)$, under the assumption (1.3)?

It is known that the sequence $\{C_n\}$ is bounded (cf. Szász [5], [6]); hence l.u.b. $C_n(\mu, p) = C(\mu, p)$ is finite. For p=0 the author [9] proved recently that

(1.5)
$$C(\mu, 0) < (2 + 4/\pi)\mu < 3.3\mu;$$

for p > 0 the sharpest estimates so far were given by Fekete [2] using a device of Paley and Fejér [1]. Fekete proved that

(1.6)
$$C(\mu, p) < 5\mu + 6p,$$

and also that

(1.7)
$$C(\mu, p) < 5\mu + 8(\mu p)^{1/2}$$

^{*} Presented to the Society, April 9, 1938.

[†] See the list of references at the end of this paper.