If we let $\omega$ be any of the possible solutions of

$$
x=\beta(\omega), \quad g(0) \leqq \omega \leqq g(1),
$$

we may write (4) in the form

$$
F(\omega)=M(\omega)+\lambda \int_{g(0)}^{g(1)} k(\omega, s) F(s) d s
$$

where $F(\omega)=f(\beta(\omega)), M(\omega)=m(\beta(\omega)), k(\omega, s)=K(\beta(\omega), \beta(s))$. We thus have our main result:

Theorem 3. When $G(x, y)$ is absolutely continuous $g(y)$ the Fred-holm-Stieltjes integral equation (1) is reducible to an ordinary Fredholm integral equation.

## 4. Mixed linear equations. The mixed equation*

$$
\begin{equation*}
f(x)=m(x)+\sum_{i=1}^{m} \lambda K^{(i)}(x) f\left(s_{i}\right)+\lambda \int_{0}^{1} K(x, s) f(s) d s \tag{5}
\end{equation*}
$$

can easily be put into the form

$$
f(x)=m(x)+\lambda \int_{0}^{1} R(x, s) f(s) d g(s) .
$$

Thus from Theorem 3 we see that equation (5) is reducible to a Fredholm integral equation.

Duke University

## A THEOREM ON QUADRATIC FORMS $\dagger$

WILLIAM T. REID
In this note the following result is proved:
Theorem. Suppose $A[x] \equiv a_{\alpha \beta} x_{\alpha} x_{\beta}, \ddagger B[x] \equiv b_{\alpha \beta} x_{\alpha} x_{\beta}$ are real quadratic forms in $\left(x_{\alpha}\right),(\alpha=1, \cdots, n)$, and that $A[x]>0$ for all real $\left(x_{\alpha}\right) \neq\left(0_{\alpha}\right)$ satisfying $B[x]=0$. Then there exists a real constant $\lambda_{0}$ such that $A[x]-\lambda_{0} B[x]$ is a positive definite quadratic form.

This theorem is of use in considering the Clebsch condition for multiple integrals in the calculus of variations. A. A. Albert§ has given

[^0]
[^0]:    * W. A. Hurwitz, Mixed linear integral equations of the first order, Transactions of this Society, vol. 16 (1915), pp. 121-133.
    $\dagger$ Presented to the Society, December 30, 1937.
    $\ddagger$ The tensor analysis summation convention is used throughout.
    § This Bulletin, vol. 44 (1938), pp. 250-253.

