$$
\begin{aligned}
& p=\left(\frac{a+2 b+5 c+10 d}{6}\right)^{2}+2\left(\frac{a-b+5 c-5 d}{6}\right)^{2} \\
& \quad+5\left(\frac{a+2 b-c-2 d}{6}\right)^{2}+10\left(\frac{a-b-c+d}{6}\right)^{2}
\end{aligned}
$$

In view of (2) and (3), the numerators in (4) are all even. Then, unless exactly three of a, b, c, d are divisible by 3 , we can choose signs for a, b, c, d so that

$$
\begin{equation*}
a-b-c+d \equiv 0(\bmod 3) \tag{5}
\end{equation*}
$$

Then all the other numerators in (4) are divisible by 3.
In the exceptional case either a and b or c and d are divisible by 3 . But the identity

$$
\begin{equation*}
9\left(A^{2}+2 B^{2}\right)=(A \pm 4 B)^{2}+2(2 A \mp B)^{2} \tag{6}
\end{equation*}
$$

(repeated if necessary) shows that any multiple of 3 of the form $x^{2}+2 y^{2}$ can be expressed in that form with x, y prime to 3 . Then (5) can be verified as above, and $q=1$. We have now proved the following theorem:

Theorem 4. Every positive integer is representable in the form

$$
a^{2}+2 b^{2}+5 c^{2}+10 d^{2}
$$

University of Illinois

A MOMENT-GENERATING FUNCTION WHICH IS USEFUL IN SOLVING CERTAIN MATCHING PROBLEMS \dagger

EDWIN G. OLDS

1. Introduction. In a book published several years ago, Fry \ddagger devoted considerable attention to various aspects of a problem which he called, "the psychic research problem." His introductory problem is the following: "A spiritualistic medium claims to be able to tell the
[^0]
[^0]: * Formula (4) and the rest of the proof of this theorem were suggested by Gordon Pall.
 \dagger Presented to the Society and The Institute of Mathematical Statistics, December 30, 1937.
 \ddagger T. C. Fry, Probability and Its Engineering Uses, Van Nostrand, New York, 1928, pp. 41-77.

