ON THE n TH DERIVATIVE OF $f(x)^{*}$

H. S. WALL

Let $y_{1}, y_{2}, y_{3}, \cdots$ be defined recursively as follows: y_{1} is the logarithmic derivative of a function $y=f(x)$, and $y_{\nu}=D_{x} y_{\nu-1},(\nu=2,3$, $4, \cdots)$. Then the successive derivatives $y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}, \cdots$ of y with respect to x are polynomials in y and the y_{ν}. In fact, $y^{\prime}=y y_{1}, y^{\prime \prime}$ $=y\left(y_{2}+y_{1}^{2}\right), y^{\prime \prime \prime}=y\left(y_{3}+3 y_{1} y_{2}+y_{1}^{3}\right)$, and

$$
\begin{equation*}
y^{(n)}=y \sum A_{\nu_{1} \nu_{2}}^{(n)} \cdots \nu_{n} y_{1}^{\nu_{1}} y_{2}^{\nu_{2}} \cdots y_{n}^{\nu_{n}}, \tag{1}
\end{equation*}
$$

where $A_{\nu_{1} \nu_{2} \cdots \nu_{n}}^{(n)}$ is a positive integer and the summation is taken for all non-negative integral solutions $\nu_{1}, \nu_{2}, \nu_{3}, \cdots, \nu_{n}$ of the equation

$$
\begin{equation*}
\nu_{1}+2 \nu_{2}+3 \nu_{3}+\cdots+n \nu_{n}=n . \tag{2}
\end{equation*}
$$

This statement may readily be proved by mathematical induction. The principal object of the present note is to prove the following theorem:

Theorem. The integer $A_{\nu_{1} \nu_{2} \cdots \nu_{n}}^{(n)}$ in (1) is equal to the number of ways that n different objects can be placed in compartments, one in each of ν_{1} compartments, two in each of ν_{2} compartments, three in each of ν_{3} compartments, $\cdot \cdot$, without regard to the order of arrangement of the compartments.

1. Generalized binomial coefficients. Let $k, m, n,(k n \leqq m)$, be positive integers, and denote by $C_{m, n}^{(k)}$ the number of ways that $k n$ objects can be selected from m objects and placed in n compartments, k in each compartment, where no account is taken of the order of arrangement of the compartments. Thus $C_{m, n}^{(1)}$ is the binomial coefficient $C_{m, n}=m!/[n!(m-n)!]$. We have

$$
n!\cdot C_{m, n}^{(k)}=C_{m, k n} \cdot\left(C_{k n, k} \cdot C_{k(n-1), k} \cdot \cdots \cdot C_{k, k}\right),
$$

or

$$
\begin{equation*}
C_{m, n}^{(k)}=m!/\left[n!(m-k n)!(k!)^{n}\right] . \tag{3}
\end{equation*}
$$

This has meaning if $m \geqq k n$. For special 0 values of the indices we shall consider $C_{m, n}^{(k)}$ to be defined by (3) by taking $0!=1$. Thus if $k \geqq 0, m \geqq 0$, we have $C_{m, 0}^{(k)}=1$.

[^0]
[^0]: * Presented to the Society, September 5, 1936.

