ON THE *n***TH DERIVATIVE OF f(x)^***

H. S. WALL

Let y_1, y_2, y_3, \cdots be defined recursively as follows: y_1 is the logarithmic derivative of a function y = f(x), and $y_{\nu} = D_x y_{\nu-1}$, $(\nu = 2, 3, 4, \cdots)$. Then the successive derivatives y', y'', y''', \cdots of y with respect to x are polynomials in y and the y_{ν} . In fact, $y' = yy_1, y'' = y(y_2 + y_1^2), y''' = y(y_3 + 3y_1y_2 + y_1^3)$, and

(1)
$$y^{(n)} = y \sum A^{(n)}_{\nu_1 \nu_2 \dots \nu_n} y_1^{\nu_1} y_2^{\nu_2} \cdots y_n^{\nu_n},$$

where $A_{\nu_1\nu_2\cdots\nu_n}^{(n)}$ is a positive integer and the summation is taken for all non-negative integral solutions $\nu_1, \nu_2, \nu_3, \cdots, \nu_n$ of the equation

(2)
$$\nu_1 + 2\nu_2 + 3\nu_3 + \cdots + n\nu_n = n$$

This statement may readily be proved by mathematical induction. The principal object of the present note is to prove the following theorem:

THEOREM. The integer $A_{\nu_1\nu_2\cdots\nu_n}^{(n)}$ in (1) is equal to the number of ways that n different objects can be placed in compartments, one in each of ν_1 compartments, two in each of ν_2 compartments, three in each of ν_3 compartments, \cdots , without regard to the order of arrangement of the compartments.

1. Generalized binomial coefficients. Let $k, m, n, (kn \le m)$, be positive integers, and denote by $C_{m,n}^{(k)}$ the number of ways that kn objects can be selected from m objects and placed in n compartments, k in each compartment, where no account is taken of the order of arrangement of the compartments. Thus $C_{m,n}^{(1)}$ is the binomial coefficient $C_{m,n} = m! / [n!(m-n)!]$. We have

$$n! \cdot C_{m,n}^{(k)} = C_{m,kn} \cdot (C_{kn,k} \cdot C_{k(n-1),k} \cdot \cdots \cdot C_{k,k}),$$

or

(3)
$$C_{m,n}^{(k)} = m!/[n!(m-kn)!(k!)^n].$$

This has meaning if $m \ge kn$. For special 0 values of the indices we shall consider $C_{m,n}^{(k)}$ to be defined by (3) by taking 0!=1. Thus if $k\ge 0$, $m\ge 0$, we have $C_{m,0}^{(k)}=1$.

^{*} Presented to the Society, September 5, 1936.