ON CONTINUED FRACTIONS REPRESENTING CONSTANTS*

H. S. WALL

1. Introduction. Let $\xi: x^{(1)}, x^{(2)}, x^{(3)}, \cdots$ be an infinite sequence of points $x=\left(x_{1}, x_{2}, x_{3}, \cdots, x_{m}\right)$ in a space S, and let $\phi_{1}(x), \phi_{2}(x)$, $\phi_{3}(x), \cdots, \phi_{k}(x)$ be single-valued real or complex functions over S. Then the functionally periodic continued fraction

$$
\begin{aligned}
& 1+\frac{\phi_{1}\left(x^{(1)}\right)}{1}+\frac{\phi_{2}\left(x^{(1)}\right)}{1}+\cdots+\frac{\phi_{k}\left(x^{(1)}\right)}{1}+\frac{\phi_{1}\left(x^{(2)}\right)}{1}+\cdots \\
& \quad+\frac{\phi_{k}\left(x^{(2)}\right)}{1}+\frac{\phi_{1}\left(x^{(3)}\right)}{1}+\cdots
\end{aligned}
$$

is a function $f(\xi)$ of the sequence ξ. By a neighborhood of a sequence $\xi: x^{(1)}, x^{(2)}, x^{(3)}, \cdots$, we shall understand a set N_{ξ} of sequences subject to the following conditions: (i) ξ is in N_{ξ}; (ii) if $\eta: y^{(1)}, y^{(2)}$, $y^{(3)}, \cdots$ is in N_{ξ}, then $\eta_{\nu}: y^{(\nu+1)}, y^{(\nu+2)}, y^{(\nu+3)}, \cdots$ and $\zeta_{\nu}: y^{(1)}, y^{(2)}$, $y^{(3)}, \cdots, y^{(\nu)}, x^{(\nu+1)}, x^{(\nu+2)}, x^{(\nu+3)}, \cdots$ are in N_{ξ} for $\nu=1,2,3, \cdots$.

Let $A_{n}(\xi)$ and $B_{n}(\xi)$ be the numerator and denominator, respectively, of the nth convergent of $f(\xi)$ as computed by means of the usual recursion formulas. Put

$$
L(\xi, t)=B_{k-1}(\xi) t^{2}+\left[\phi_{k}\left(x^{(1)}\right) B_{k-2}(\xi)-A_{k-1}(\xi)\right] t-\phi_{k}\left(x^{(1)}\right) A_{k-2}(\xi)
$$

Then our principal theorem is as follows:
Theorem 1. Let there be a sequence $c: c^{(1)}, c^{(2)}, c^{(3)}, \cdots$, and a neighborhood N_{c} of c, and a number r having the following properties:
(a) $f(\xi)$ converges uniformly over N_{c},
(b) $f(c)=r$,
(c) $L(\xi, r)=0$ for every sequence ξ in N_{c},
(d) $\phi_{i}\left(x^{(\nu)}\right) \neq 0,(\nu=1,2,3, \cdots ; i=1,2,3, \cdots, k)$, for every sequence $\xi: x^{(1)}, x^{(2)}, x^{(3)}, \cdots$ in N_{c}.
When these conditions are fulfilled, $f(\xi)=r$ throughout N_{c}.
The proof of Theorem 1 is contained in $\S 2 ; \S 3$ contains a specialization and $\S 4$ an application of this theorem. In $\S 5$ continued fractions

[^0]
[^0]: * Presented to the Society, April 9, 1937.

