AN APPLICATION OF SCHLÄFLI'S MODULAR EQUATION TO A CON JECTURE OF RAMANUJAN \dagger

D. H. LEHMER

In 1918 Ramanujan \ddagger made the following conjecture:
If $q=5,7$, or 11 , and if $24 n-1$ is divisible by q^{α}, then the number $p(n)$ of unrestricted partitions of n is divisible by q^{α}.

Ramanujan himself proved this conjecture to be true in case \ddagger $q^{\alpha}=5,7,5^{2}$, and 7^{2}, and also§ for $q^{\alpha}=11$ and 11^{2}. It has since been proved $\|$ for $q^{\alpha}=5^{3}$. Some modification of the conjecture is necessary, however, since, as Chowla $\mathbb{1}$ was first to notice, it fails for $q^{\alpha}=7^{3}$. In fact, since $24 \cdot 243-1=5831$ is divisible by 7^{3}, it would follow from the conjecture that $p(243)$ is also divisible by 7^{3}. However, Gupta's table** of $p(n)$ gives

$$
p(243)=133978259344888
$$

a number $\dagger \dagger$ which is not divisible by 7^{3}. It occurred to the writer that it would be worth while making an investigation of $p(599)$ and $p(721)$ relative to their divisibility by 5^{4} and 11^{3} respectively. $\ddagger \ddagger$ To obtain the value of $p(n)$ for these isolated values of n beyond the limits of then existing tables, use was made of the celebrated Hardy-Ramanujan series,§§ which may be written

$$
\begin{equation*}
p(n)=\frac{(12)^{1 / 2}}{\mu(24 n-1)} \sum_{k=1}^{N} A_{k}^{*}(n)(\mu-k) e^{\mu / k}+r_{n}(N) \tag{1}
\end{equation*}
$$

where we have written μ for $\pi(24 n-1)^{1 / 2} / 6$. By taking $N=18$ for $n=599$, and $N=21$ for $n=721$, values were obtained for the series in

[^0]
[^0]: \dagger Presented to the Society, September 10, 1937.
 \ddagger Proceedings of the London Mathematical Society, vol. 19 (1919), pp. 207-210; Collected Papers, pp. 210-213.
 § Mathematische Zeitschrift, vol. 9 (1921), pp. 147-153; Collected Papers, pp. 232-238. A proof for 11^{2} is in one of his notebooks.
 || See Bulletin of the Academy of Sciences, U.R.S.S., 1933, ro. 6, pp. 763-800.
 I Journal of the London Mathematical Society, vol. 9 (1934), p. 247.
 ** Proceedings of the London Mathematical Society, (2), vol. 39 (1935), p. 149.
 $\dagger \dagger$ This number has been verified by the present writer.
 $\ddagger \ddagger$ Journal of the London Mathematical Society, vol. 11 (1936), pp. 114-118.
 §§ Proceedings of the London Mathematical Society, (2), vol. 17 (1918), pp. 75115. Ramanujan's Collected Papers, pp. 276-309.

