ON SYMMETRIC DETERMINANTS

BY W. V. PARKER

In a former paper* the writer proved the following theorem:
Theorem A. If $D=\left|a_{i j}\right|$ is a symmetric determinant of order $n>4$ with $a_{i j}$ real and $a_{i i}=0,(i=1,2, \cdots, n)$, and if all fourthorder principal minors of D are zero, then D vanishes.

The purpose of this note is to give some results which are obtained immediately from this theorem and which are in one sense a generalization of this theorem.

Suppose D is a symmetric determinant of order $n>4$, with real elements, in which all principal minors of order $n-1$ and also all principal minors of order $n-4$ are zero. If $D^{\prime}=\left|A_{i j}\right|$ is the adjoint of D, then $A_{i i}=0,(i=1,2, \cdots, n)$. Each fourthorder principal minor of D^{\prime} is equal to the product of D^{3} by a principal minor of D of order $n-4 . \dagger$ Therefore D^{\prime} satisfies the conditions of Theorem A and hence is zero. But $D^{\prime}=D^{n-1}$ and hence D is also zero and we have the following theorem:

Theorem 1. If D is a symmetric determinant of order $n>4$, with real elements, in which all principal minors of order $n-1$ and also all principal minors of order $n-4$ are zero, then D vanishes.

Suppose D is a symmetric determinant of order $n>4$, with real elements, in which all principal minors of some order $k>3$ and also all principal minors of order $k-3$ are zero. Let M be any ($k+1$)-rowed principal minor of $D,(M=D$ if $n=5)$, then M is a determinant satisfying the conditions of Theorem 1 and hence M is zero. Therefore, in D, all principal minors of order k and also all principal minors of order $k+1$ are zero, hence D is of rank $k-1$ or less. \ddagger We have thus proved the following theorem:

[^0]
[^0]: * On real symmetric determinants whose principal diagonal elements are zero, this Bulletin, vol. 38 (1932), pp. 259-262. See also, On symmetric determinants, American Mathematical Monthly, vol. 41 (1934), pp. 174-178.
 \dagger Bôcher, Introduction to Higher Algebra, p. 31.
 \ddagger Bôcher, loc. cit., page 57, Theorem 2.

