NOTE ON A THEOREM CHARACTERIZING GEODESIC ARCS IN COMPLETE, CONVEX METRIC SPACES

BY L. M. BLUMENTHAL

1. Introduction. In his four Untersuchungen uiber allgemeine Metrik,* Menger initiated the systematic study of the metric geometry of abstract semi-metric and metric spaces. Among the most important of the notions Menger introduced in such spaces is that of convexity which leads, in complete metric spaces, to the existence of geodesic arcs joining each pair of points a, b of the space. Such an arc is congruent to a line segment of length $a b . \dagger$

Concerning geodesic arcs in complete, convex metric spaces, Menger gives the following theorem: \ddagger

Theorem. The geodesic arcs joining two points a, b of a complete, convex metric space are characterized among all arcs joining a, b by the following property: if p, q are elements of a geodesic arc joining a, b (p, q both distinct from a, b) then either p is between \S a and q, or p is between q and b, or p is identical with q.

That a geodesic arc joining a, b has this property follows directly, as Menger observes, from the fact that such an arc may be imbedded congruently in a line segment of length $a b$. To show, however, that the property is characteristic for geodesic arcs it must be shown, of course, that every arc joining a, b that has this property is a geodesic arc. This sufficiency of the property is not shown by Menger (two proofs of the necessity of the condition being given instead). As the theorem is of use in developing some of the properties of convex spaces, and as a search of the literature, as well as conversation with Menger, has re-

[^0]
[^0]: * Mathematische Annalen, vol. 100 (1928), pp. 75-163; vol. 103 (1930), pp. 466-501.
 \dagger The term "geodesic arc" is used by the author in the geometry of distances always in the sense of minimizing geodesic.
 \ddagger Erste Untersuchung, loc. cit., p. 91.
 § A point q lies between two points p, r if and only if $p \neq q \neq r$ and $p q+q r$ $=p r$. We symbolize this relation by writing $p q r$.

