A NOTE ON THE CESÀRO METHOD OF SUMMATION*

BY J. H. CURTISS

1. Introduction. A sequence $\left\{S_{n}\right\}$, or a series $\sum U_{n}$ with partial sums S_{n}, is said to be summable by the Cesàro mean of order α, or summable (C, α), to the sum s, if $\sigma_{n}^{\alpha}=S_{n}^{\alpha} / A_{n}^{\alpha} \rightarrow s, \dagger$ where S_{n}^{α} and $A_{n}{ }^{\alpha}$ are given by the following relations:

$$
\begin{align*}
(1-x)^{-\alpha-1} & =\sum A_{n}^{\alpha} x^{n} ; \quad A_{n}^{\alpha}=\frac{(\alpha+1)(\alpha+2) \cdots(\alpha+n)}{n!} \tag{1}\\
\sum S_{n}^{\alpha} x^{n} & =(1-x)^{-\alpha} \sum S_{n} x^{n}=(1-x)^{-\alpha-1} \sum U_{n} x^{n}: \tag{2}\\
S_{n}^{\alpha} & =\sum_{\nu=0}^{n} A_{n-\nu}^{\alpha-1} S_{\nu}=\sum_{\nu=0}^{n} A_{n-\nu}^{\alpha} U_{\nu} ;
\end{align*}
$$

and where α is any complex number other than a negative integer. \ddagger We shall restrict ourselves in this note to real orders of summability. It is known that if a sequence or series S is summable (C, α), $\alpha>-1$, it is summable (C, α^{\prime}), $\alpha^{\prime}>\alpha$, to the same sum. § If a sequence or series S is summable (C, α) for all $\alpha \geqq \gamma$, then the lower limit of all such possible values of γ is called by Chapman $\|$ the index of summability of S.

It is sometimes easier to find the indices of summability and the sums of certain subsequences of a sequence S than to find the index and sum of S itself. As a trivial example, let $\left\{S_{n}\right\}$ be the sequence of partial sums of Leibniz's series $1-1+1-1+\cdots$. Then $S_{2 k}=1, S_{2 k+1}=0$, and it is easily seen that $\left\{S_{2 k}\right\}$ is summable to the value 1 and $\left\{S_{2 k+1}\right\}$ to the value 0 by the Cesàro mean of any order. It is the purpose of this note

[^0]
[^0]: * Presented to the Society, September 9, 1937.
 \dagger Superscripts will not denote exponents when applied to capital letters and to the letter σ.
 \ddagger For a systematic account of the Cesàro method, see Kogbetliantz, Summation des Séries et Intégrales Divergentes par les Moyennes Arithmétiques et Typiques, Paris, 1931.
 § Kogbetliantz, op. cit., p. 17.
 || Proceedings of the London Mathematical Society, (2), vol. 9 (1911), pp. 369-409; p. 378.

