Let D_{H_2} denote a domain containing H_2 such that $\overline{D}_{H_2} \cdot (K+D_{K_1})$ =0. Let D_{K_2} denote a domain containing K_2 and such that $\overline{D}_{K_2} \cdot \overline{(H+D_{H_1}+D_{H_2})} = 0$. This process may be continued and $D_H = \sum D_{H_n}$ and $D_K = \sum D_{K_n}$ are two mutually exclusive domains covering H and K respectively.

THE UNIVERSITY OF TEXAS

ON AN INTEGRAL EQUATION WITH AN ALMOST PERIODIC SOLUTION

BY B. LEWITAN

We assume that the function f(x) is almost periodic in the sense of H. Bohr and that the functions $E(\alpha)$, $\alpha E(\alpha)$ are absolutely integrable in $[-\infty, \infty]$.

THEOREM. If all real zeros of the function

$$\gamma(\alpha) = \frac{1}{2\pi} \int_{-\infty}^{\infty} E(u) e^{-i\alpha u} du$$

have integer multiplicities and only two limit points ∞ , α^* , then every solution $\phi(x)$ of the equation

(1)
$$\int_{-\infty}^{\infty} E(\xi - x) \cdot \phi(\xi) d\xi = f(x)$$

which is uniformly continuous and bounded in $[-\infty, \infty]$ is almost periodic.

PROOF. Without loss of generality we may assume that the finite limit point α^* has the value 0; otherwise we multiply equation (1) by $e^{-i\alpha^*x}$.

Putting

$$f_n(x) = \frac{3}{2\pi} \int_{-\infty}^{\infty} f\left(x + \frac{2u}{n}\right) \frac{\sin^4 u}{u^4} \, du,$$

we obtain

$$\int_{-\infty}^{\infty} E(\xi)\phi_n(\xi + x)d\xi = f_n(x),$$