Let $D_{H_{2}}$ denote a domain containing H_{2} such that $\bar{D}_{H_{2}} \cdot \overline{\left(K+D_{K_{1}}\right)}$ $=0$. Let $D_{K_{2}}$ denote a domain containing K_{2} and such that $\bar{D}_{K_{2}} \cdot \overline{\left(H+D_{H_{1}}+D_{H_{2}}\right)}=0$. This process may be continued and $D_{H}=\sum D_{H_{n}}$ and $D_{K}=\sum D_{K_{n}}$ are two mutually exclusive domains covering H and K respectively.

The University of Texas

ON AN INTEGRAL EQUATION WITH AN ALMOST PERIODIC SOLUTION

 by b. LEWITANWe assume that the function $f(x)$ is almost periodic in the sense of H . Bohr and that the functions $E(\alpha), \alpha E(\alpha)$ are absolutely integrable in $[-\infty, \infty]$.

Theorem. If all real zeros of the function

$$
\gamma(\alpha)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} E(u) e^{-i \alpha u} d u
$$

have integer multiplicities and only two limit points ∞, α^{*}, then every solution $\phi(x)$ of the equation

$$
\begin{equation*}
\int_{-\infty}^{\infty} E(\xi-x) \cdot \phi(\xi) d \xi=f(x) \tag{1}
\end{equation*}
$$

which is uniformly continuous and bounded in $[-\infty, \infty]$ is almost periodic.

Proof. Without loss of generality we may assume that the finite limit point α^{*} has the value 0 ; otherwise we multiply equation (1) by $e^{-i \alpha^{*} x}$.

Putting

$$
f_{n}(x)=\frac{3}{2 \pi} \int_{-\infty}^{\infty} f\left(x+\frac{2 u}{n}\right) \frac{\sin ^{4} u}{u^{4}} d u
$$

we obtain

$$
\int_{-\infty}^{\infty} E(\xi) \phi_{n}(\xi+x) d \xi=f_{n}(x)
$$

