ON BOUNDED CONVOLUTIONS

BY E. R. VAN KAMPEN AND AUREL WINTNER

For a type of convolutions of distributions on convex curves, there has been given recently a purely geometrical convergence criterion. \dagger In what follows, this geometrical criterion will be freed from the convexity assumption, thus obtaining in case of bounded spectra a necessary and sufficient convergence criterion which involves only the spectra and not the distribution functions themselves. Only one-dimensional distributions will be considered; it will be clear from the proofs that the transition to multi-dimensional cases is obvious.

If $\beta=\beta(x)$ is a distribution function, let $S(\beta)$ denote its spectrum, and $[S(\beta)]$ the diameter of this spectrum, the diameter [T] of a set T being defined as the least upper bound ($\leqq+\infty$) of the mutual distances of the pairs of points contained in T. The vectorial sum \ddagger of two sets T_{1}, T_{2} will be denoted by $T_{1}(+) T_{2}$, so that $S\left(\beta_{1}{ }^{*} \beta_{2}\right)$ is the closure of $S\left(\beta_{1}\right)(+) S\left(\beta_{2}\right)$; and $S\left(\beta_{1}{ }^{*} \beta_{2}{ }^{*} \cdots\right)$ is the closure of $S\left(\beta_{1}\right)(+) S\left(\beta_{2}\right)(+) \cdots$, whenever the infinite convolution $\beta_{1}{ }^{*} \beta_{2}{ }^{*} \cdots$ is convergent. An infinite convolution $\beta_{1}{ }^{*} \beta_{2}{ }^{*} \cdots$ will be called bounded if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left[S\left(\beta_{n}\right)\right]<+\infty \tag{1}
\end{equation*}
$$

It is clear that the boundedness of an infinite convolution is neither necessary nor sufficient for its convergence.

If $\beta_{1}{ }^{*} \beta_{2}{ }^{*} \ldots$ is convergent, its spectrum $S\left(\beta_{1}{ }^{*} \beta_{2}{ }^{*} \ldots\right)$ is a bounded set if and only if $\beta_{1}{ }^{*} \beta_{2}{ }^{*} \ldots$ is a bounded convolution in the sense (1). This is implied by the fact that an infinite convolution $\beta_{1}{ }^{*} \beta_{2}{ }^{*} \cdots$ is bounded if and only if

$$
\left[S\left(\beta_{1}^{*} \cdots \beta_{n}^{*}\right)\right]<\text { const. } \quad(n=1,2, \cdots)
$$

\dagger E. R. van Kampen and A. Wintner, Convoluiions of distributions on convex curves and the Riemann zeta function, American Journal of Mathematics, vol. 59 (1937), pp. 185-186.
\ddagger Cf. B. Jessen and A. Wintner, Distribution functions and the Riemann zeta function, Transactions of this Society, vol. 38 (1935), p. 52 and p. 56.

