ON BOUNDED CONVOLUTIONS

BY E. R. VAN KAMPEN AND AUREL WINTNER

For a type of convolutions of distributions on convex curves, there has been given recently a purely geometrical convergence criterion.[†] In what follows, this geometrical criterion will be freed from the convexity assumption, thus obtaining in case of bounded spectra a necessary and sufficient convergence criterion which involves only the spectra and not the distribution functions themselves. Only one-dimensional distributions will be considered; it will be clear from the proofs that the transition to multi-dimensional cases is obvious.

If $\beta = \beta(x)$ is a distribution function, let $S(\beta)$ denote its spectrum, and $[S(\beta)]$ the diameter of this spectrum, the diameter [T] of a set T being defined as the least upper bound $(\leq +\infty)$ of the mutual distances of the pairs of points contained in T. The vectorial sum[‡] of two sets T_1 , T_2 will be denoted by $T_1(+)T_2$, so that $S(\beta_1^*\beta_2)$ is the closure of $S(\beta_1)$ (+) $S(\beta_2)$; and $S(\beta_1^*\beta_2^*\cdots)$ is the closure of $S(\beta_1)(+)S(\beta_2)(+)\cdots$, whenever the infinite convolution $\beta_1^*\beta_2^*\cdots$ is convergent. An infinite convolution $\beta_1^*\beta_2^*\cdots$ will be called *bounded* if

(1)
$$\sum_{n=1}^{\infty} \left[S(\beta_n) \right] < + \infty.$$

It is clear that the boundedness of an infinite convolution is neither necessary nor sufficient for its convergence.

If $\beta_1 * \beta_2 * \cdots$ is convergent, its spectrum $S(\beta_1 * \beta_2 * \cdots)$ is a bounded set if and only if $\beta_1 * \beta_2 * \cdots$ is a bounded convolution in the sense (1). This is implied by the fact that an infinite convolution $\beta_1 * \beta_2 * \cdots$ is bounded if and only if

(1')
$$[S(\beta_1^*\cdots\beta_n^*)] < \text{const.} \qquad (n = 1, 2, \cdots).$$

† E. R. van Kampen and A. Wintner, *Convolutions of distributions on convex curves and the Riemann zeta function*, American Journal of Mathematics, vol. 59 (1937), pp. 185-186.

[‡] Cf. B. Jessen and A. Wintner, *Distribution functions and the Riemann zeta function*, Transactions of this Society, vol. 38 (1935), p. 52 and p. 56.