NOTE ON THE RELATION BETWEEN CONTINUITY

AND DEGREE OF POLYNOMIAL APPROXIMATION IN THE COMPLEX DOMAIN*

BY J. L. WALSH AND W. E. SEWELL

1. Introduction. It is the purpose of the present note to establish the following theorems:

Theorem I. Let C be an analytic Jordan curve in the z-plane and let $f(z)$ be defined in \bar{C}, the closed limited point set bounded by C. For each $n, n=1,2, \cdots$, let a polynomial $P_{n}(z)$ of degree n in z exist such that

$$
\begin{equation*}
\left|f(z)-P_{n}(z)\right| \leqq \frac{M}{n^{p+\alpha}}, \quad z \text { in } \bar{C}, \quad 0<\alpha \leqq 1 \tag{1}
\end{equation*}
$$

where M is a constant independent of n and z, and p is a nonnegative integer. Then $f(z)$ is analytic in C and continuous in \bar{C}; the pth derivative $f^{(p)}(z)$ exists on C in the one-dimensional sense and satisfies the condition

$$
\begin{array}{r}
\left|f^{(p)}\left(z_{1}\right)-f^{(p)}\left(z_{2}\right)\right| \leqq L\left|z_{1}-z_{2}\right|^{\alpha}|\log | z_{1}-z_{2}| |^{\beta} \tag{2}\\
z_{1}, z_{2} \text { on } C,
\end{array}
$$

where $\beta=0$ if $\alpha<1$, and $\beta=1$ if $\alpha=1$, and where L is a constant independent of z_{1} and z_{2}.

Theorem II. Let E, with boundary C, be a closed limited point set in the z-plane whose complement K is connected, and is regular in the sense that there exists a function $w=\phi(z)$ which maps K conformally but not necessarily uniformly onto $|w|>1$ so that the points at infinity in the two planes correspond to each other. Let the locus $C_{R}:|\phi(z)|=R>1$, consist of a finite number of mutually exterior analytic Jordan curves. Let $f(z)$ be defined in E, and for each $n, n=1,2, \cdots$, let a polynomial $P_{n}(z)$ of degree n in z exist such that

$$
\begin{equation*}
\left|f(z)-P_{n}(z)\right| \leqq \frac{M}{n^{p+\alpha+1} R^{n}}, \quad z \text { in } E, \quad 0<\alpha \leqq 1 \tag{3}
\end{equation*}
$$

[^0]
[^0]: * Presented to the Society, March 27, 1937.

