ON SOME GAP THEOREMS FOR EULER'S METHOD OF SUMMATION OF SERIES

BY YOSHITOMO OKADA

Hardy and Littlewood* have proved the following theorem:

For a given series $\sum_{k=1}^{\infty} a_{n_k}$, $(a_{n_k} \neq 0)$, let θ be a fixed constant such that

$$\frac{n_{k+1}}{n_k} \geqq \theta > 1, \qquad (k = 1, 2, \cdots).$$

If this series be summable by Abel's method of summation to the sum s, then this series is convergent and its sum is s.

Obreschkoff[†] obtained also a similar result for Cesàro's method. We shall now study these results for Euler's method. We shall begin with the following theorem:

we shall begin with the following theorem.

THEOREM 1.[‡] Let $\sum_{n=0}^{\infty} a_n$ be a given series summable by Euler's method, that is, if $s_0 = 0$, $s_n = a_0 + a_1 + \cdots + a_{n-1}$, $(n \ge 1)$,

(1)
$$\lim_{n \to \infty} \frac{1}{2^n} \left\{ s_0 + n s_1 + \frac{n(n-1)}{2!} s_2 + \cdots + s_n \right\} = s$$

exists; and for two given increasing sequences $\{n_k\}$, $\{n'_k\}$, $(n_k < n'_k)$, of integers and for a given number α , $(1 \le \alpha < 2)$, let

(2)
$$a_{\nu} = 0, \text{ for } n_{k} < \nu < n'_{k}, \quad (k = 1, 2, \cdots), \\ a_{n} = O(\alpha^{n}).$$

If $\eta_k'/\eta_k \ge (1+\eta)/(1-\eta)$, $(k=1, 2, \cdots)$, for a positive number η such that

$$(1 + \eta) \log (1 + \eta) + (1 - \eta) \log (1 - \eta) - 2 \log \alpha > 0,$$

then

(3)
$$\lim_{k\to\infty} \sum_{\nu=0}^{n_k} a_{\nu} = s$$

* Hardy and Littlewood, Proceedings of the London Mathematical Society, (2), vol. 25 (1926).

† Obreschkoff, Tôhoku Mathematical Journal, vol. 32 (1930).

 $[\]ddagger$ If, in this theorem, (1) holds uniformly and O of (2) is independent of z when each a_n is a function of z, then (3) also holds uniformly.