A COMPLETE SYSTEM FOR THE SIMPLE GROUP G_{60}^{6}

BY C. W. STROM

The problem of this paper is to obtain an irreducible set of polynomials in terms of which all the polynomials that are invariant under the simple group G_{60}^{6} can be expressed as polynomial functions.

No polynomials of degrees and extents 1 and 2 respectively are invariant under this group except the respective elementary symmetric polynomials, E_{1} and E_{2}. Hence, this irreducible set will contain no polynomials of extents 1 and 2 other than the elementary symmetric polynomials which we shall write as S-polynomials:

$$
S_{1} \equiv E_{1} \quad \text { and } \quad S_{2} \equiv E_{2}
$$

The group leaves invariant the set of triples,

$$
123,134,145,156,162,235,346,452,563,624
$$

and the complementary set

$$
124,146,163,135,152,243,465,632,354,526 .
$$

Hence the S-polynomials,

$$
\begin{aligned}
& S_{123} \equiv x_{1} x_{2} x_{3}+x_{1} x_{3} x_{4}+x_{1} x_{4} x_{5}+\cdots, \\
& S_{124} \equiv x_{1} x_{2} x_{4}+x_{1} x_{4} x_{6}+x_{1} x_{6} x_{3}+\cdots,
\end{aligned}
$$

or, as we shall write them,

$$
\begin{aligned}
& S_{123} \equiv 123+134+145+\cdots \\
& S_{124} \equiv 124+146+163+\cdots
\end{aligned}
$$

are invariant under the group. Clearly, the polynomials $S_{1 i 2 i 3^{2} k}$ and $S_{1 i 2 i 4 k}$ are also invariant under the group, where

$$
S_{1^{i} i_{i j k}}+S_{1^{i_{2 i 4 k}}} \equiv \Sigma_{1^{i_{2 i 3 k}}}
$$

the general symmetric polynomial of extent 3 on 6 variables.
Each of the 15 quadruples that can be selected from among the numbers $1, \cdots, 6$ may be regarded as the intersection of two of the triples in each of the sets above. Thus, 1234 is the

