EQUIVALENCE OF ALGEBRAIC EXTENSIONS \dagger

BY REINHOLD BAER

The commutative fields $\ddagger K$ and H are equivalent with regard to their common subfield L, if there exists an isomorphism between K and H which maps every element of L upon itself. If H and K are equivalent with regard to L, then the same equations with coefficients in L have solutions in H and in K. It is the aim of this note to establish a criterion for the validity of the converse of the above proposition.

The field F is completely algebraic with regard to its subfield S, if F and S satisfy:
(1) F is algebraic with regard to S;
(2) if \mathfrak{f} is an isomorphism of S upon the subfield S^{\prime} of the field G^{\prime} such that every equation (with coefficients) in S which has a solution in F is mapped by \mathfrak{f} upon an equation in S^{\prime} which has a solution in G^{\prime}, then f is induced by an isomorphism of F upon a field F^{\prime} between S^{\prime} and $G^{\prime}\left(S^{\prime} \leqq F^{\prime} \leqq G^{\prime}\right)$.
E. Steinitz§ has proved that every simple algebraic extension \| and every normal algebraic extension \mathbb{T} is completely algebraic.

Lemma 1. If the algebraic extension F of the field S satisfies the condition (i) to every pair of fields U and V such that $S \leqq U \leqq V \leqq F$, V finite with regard to U, there exists a field W between V and F such that W is finite and completely algebraic with regard to U, then F is completely algebraic with regard to S.

Proof. There exists a chain of fields $F_{v}(v$ an ordinal number

[^0]
[^0]: \dagger Presented to the Society, October 31, 1936.
 \ddagger Only commutative fields will be considered in this note.
 § See E. Steinitz, Algebraische Theorie der Körper; Mit Erläuterungen und einem Anhang: Abriss der Galois-schen Theorie, neu herausgegeben von Reinhold Baer und Helmut Hasse, 1931.
 $\| S$ is the simple algebraic extension of the field F, generated by the element b, if b satisfies an algebraic equation with coefficients in F and S is a smallest field containing F and b.

 I N is normal with regard to its subfield S if every irreducible polynomial in S which has zeros in N is in N a product of linear polynomials.

