ON A CLASS OF RECURRENT SEQUENCES*

BY H. E. ROBBINS

The first example of a recurrent, non-periodic sequence was given by Marston Morse \dagger in connection with the geodesics on a surface of negative curvature. A discussion of their significance, together with a general method of definition may be found in Birkhoff's Dynamical Systems, 1927, p. 246. In this note they will be considered independently of their origin, and a class of such sequences with certain interesting properties will be defined. (Theorem 1 of the present paper, except insofar as it refers to the particular sequence under discussion, is therefore not new.) As a preliminary to this we shall make certain definitions.

A sequence is a doubly-infinite row of the symbols 1 and 2: $\cdots c_{-3} C_{-2} c_{-1} c_{0} c_{1} c_{2} c_{3} \cdots$, where each c_{i} is either a 1 or a 2 . A block is a set of consecutive members of a sequence: $c_{m} c_{m+1} \cdots c_{n}$ and has length s if there are s symbols in it. A sequence is periodic if there exists an integer p such that $c_{n+p}=c_{n}$ for all n. A sequence is recurrent if there exists a function of integers $f(n)$ with integral values, such that any block of length n chosen anywhere in the sequence is contained as a block in any block of length $f(n)$. The least such function $f(n)$ will be called the ergodic function of the sequence.

As an example of such a sequence, let
$a_{0}=12, \quad a_{1}=a_{0}^{-1} a_{0} a_{0}=211212, \cdots, a_{n+1}=a_{n}^{-1} a_{n} a_{n}, \cdots$.
To define our sequence we number the symbols starting with the original

$$
\begin{aligned}
& \cdots c_{0} c_{1} \cdots \\
& \cdots 12 \cdots
\end{aligned}
$$

which has been underlined above. We may omit a more precise definition of the nth symbol since it will be unnecessary for our present purpose. We note that

[^0]
[^0]: * Presented to the Society, September 1, 1936.
 \dagger Transactions of this Society, vol. 22 (1921), p. 94.

