BRANCH-POINT MANIFOLDS ASSOCIATED WITH A LINEAR SYSTEM OF PRIMALS*

BY T. R. HOLLCROFT

1. Introduction. Linear ∞^{α} systems of primals in S_{r} have been treated \dagger only for $\alpha=1,2$. The properties of a linear system are obtained from the characteristics of the jacobian and of the branch-point manifold associated with the system. There are, at present, no means for deriving most of the characteristics of a singular primal or manifold in S_{r}, especially for $r>4$.

In this paper, a theorem is developed giving a set of characteristics of the branch-point manifolds of the system and its sub-systems. This is a step, not only toward the characterization of a general linear system in S_{r}, but also toward the study of singular manifolds which contain both nodal and cuspidal manifolds. \ddagger
2. Definitions and Basic Considerations. In S_{r}, the linear ∞^{r} system, F_{r}, of primals is defined by the equation

$$
\begin{equation*}
\sum \lambda_{i} f_{i}=0, \quad(i=1,2, \cdots, r+1) \tag{1}
\end{equation*}
$$

in which the f_{i} are general algebraic functions of order n in the $r+1$ homogeneous variables x_{i}. Then $f_{i}=0$ is the equation of a primal of order n without singularities in S_{r}.

The primals of F_{r} in the r-space (x) are in $(1,1)$ correspondence with the primes $\sum a_{i} y_{i}=0,(i=1,2, \cdots, r+1)$, of an r space (y). This correspondence is defined by the equations

$$
\rho y_{i}=f_{i}, \quad(i=1,2, \cdots, r+1)
$$

[^0]
[^0]: * Presented to the Society, September 12, 1935.
 \dagger T. R. Hollcroft, Pencils of hypersurfaces, American Journal of Mathematics, vol. 53 (1931), pp. 929-936; Nets of manifolds in i dimensions, Annali di Matematica, (4), vol. 5 (1927-28), pp. 261-267.
 \ddagger These terms will be used: node, a double point of a manifold at which the quadric hypercone is entirely general; nodal manifold of a manifold f, a manifold for every point of which (except points on pinch and singular loci) the two tangent linear manifolds to f are distinct; cuspidal manifold of f, a manifold for all points of which the two tangent linear manifolds to f coincide; cone to mean hypercone for $r>3$.

