BRANCH-POINT MANIFOLDS ASSOCIATED WITH A LINEAR SYSTEM OF PRIMALS*

BY T. R. HOLLCROFT

1. Introduction. Linear ∞^{α} systems of primals in S_r have been treated \dagger only for $\alpha = 1$, 2. The properties of a linear system are obtained from the characteristics of the jacobian and of the branch-point manifold associated with the system. There are, at present, no means for deriving most of the characteristics of a singular primal or manifold in S_r , especially for r > 4.

In this paper, a theorem is developed giving a set of characteristics of the branch-point manifolds of the system and its sub-systems. This is a step, not only toward the characterization of a general linear system in S_r , but also toward the study of singular manifolds which contain both nodal and cuspidal manifolds. \ddagger

2. Definitions and Basic Considerations. In S_r , the linear ∞^r system, F_r , of primals is defined by the equation

(1)
$$\sum \lambda_i f_i = 0, \quad (i = 1, 2, \dots, r+1),$$

in which the f_i are general algebraic functions of order n in the r+1 homogeneous variables x_i . Then $f_i=0$ is the equation of a primal of order n without singularities in S_r .

The primals of F_r in the r-space (x) are in (1, 1) correspondence with the primes $\sum a_i y_i = 0$, $(i = 1, 2, \dots, r+1)$, of an r-space (y). This correspondence is defined by the equations

$$\rho y_i = f_i, \quad (i = 1, 2, \dots, r+1).$$

^{*} Presented to the Society, September 12, 1935.

[†] T. R. Hollcroft, *Pencils of hypersurfaces*, American Journal of Mathematics, vol. 53 (1931), pp. 929-936; *Nets of manifolds in i dimensions*, Annali di Matematica, (4), vol. 5 (1927-28), pp. 261-267.

[‡] These terms will be used: node, a double point of a manifold at which the quadric hypercone is entirely general; nodal manifold of a manifold f, a manifold for every point of which (except points on pinch and singular loci) the two tangent linear manifolds to f are distinct; cuspidal manifold of f, a manifold for all points of which the two tangent linear manifolds to f coincide; cone to mean hypercone for r > 3.