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A NOTE ON YOUNG-STIELTJES INTEGRALS*
BY F. G. DRESSEL

THEOREM 1. If f(x) s bounded and measurable Borel, and

a1(x), go(x) are of bounded variation, then the following equality
holds:
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ProoF. In a recent article Evanst showed that if g;(x) and
g2(x) have no common points of discontinuity, then
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Therefore (1) holds if either gi(x) or gs(x) are continuous. It re-
mains to show that the theorem holds when gi(x) and g:(x) are
both step functions. Under these circumstances we have
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where the summations are taken over all the discontinuities of
gi(x) and ga(x).

The following lemmas are immediate applications of equa-
tion (1).

* Presented to the Society, November 30, 1935.
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