A NON-REGULAR PROBLEM

$$F_{89}(x_8) = f(x_8) \leq F_{k_0}(x_8),$$

$$F_{89}(x_9) = f(x_9) < F_{k_0}(x_9),$$

so that, by Theorem 1 and its corollary,

$$F_{89}(x) < F_{k_0}(x), \qquad (x_8 < x < b);$$

in particular,

(41) $F_{89}(x_7) < F_{k_0}(x_7).$

Now (41) contradicts (39) and (40).

The Rice Institute

SUFFICIENT CONDITIONS FOR A NON-REGULAR PROBLEM IN THE CALCULUS OF VARIATIONS*

G. M. EWING

1. Introduction. Given $J = \int_{x_1}^{x_2} f(x, y, y') dx$, it is well known that a minimizing curve satisfies the necessary conditions of Euler, Weierstrass, and Legendre, which we shall designate as I, II, and III,[†] respectively. If further, $f_{y'y'}(x, y, y') \neq 0$ on the minimizing curve, the Jacobi condition IV is necessary, while the stronger set of conditions I, II_b', III', and IV'[‡] are sufficient for a strong relative minimum.

The purpose of this study is to obtain a set of sufficient conditions for a curve without corners along which $f_{y'y'}$ may have zeros. Since the classical theory gives only the necessary conditions I, II, and III, we wish to obtain a Jacobi condition; and with this in view, introduce the integral

$$L \equiv \int_{x_1}^{x_2} \phi(x, y, y') dx, \ \phi(x, y, y') \equiv f(x, y, y') + k^2 [y' - e'(x)]^2,$$

(x_1 \le x \le x_2, k \le 0),

by means of which we find a necessary condition that we shall call IV'_{L} . Suitably strengthened, this becomes IV'_{Lb} and the set of conditions I, II_b, III_b, and IV'_{Lb} are found sufficient for an improper strong relative minimum.

1937.]

^{*} Presented to the Society, November 27, 1936.

[†] G. A. Bliss, Calculus of Variations, 1925, pp. 130-132.

[‡] Bliss, loc. cit., pp. 134–135.