PREASSIGNED VALUES OF |F(x)|

identical transformation $A \rightarrow A$. Then \overline{U} may be chosen of type Δ , and the number $(\Gamma \cdot \Delta)$ obtained is precisely (24).

Let us recall in concluding that the same formulas hold for transformations of compact metric HLC spaces. They are spaces endowed with a strong type of local connectedness in the sense of homology, analogous to that possessed by the so-called absolute neighborhood retracts.[†]

PRINCETON UNIVERSITY

CIRCLES IN WHICH |F(x)| HAS A SINGULARITY OR ASSUMES PREASSIGNED VALUES

BY J. W. CELL

Let k be a given positive integer and let a_0 and $a_k \neq 0$ be two given constants. Let $F_k(x)$ be any member whatever of the class C_k of functions which are regular in the neighborhood of the origin and which there have the expansion

$$F_k(x) = a_0 + a_k x^k + a_{k+1} x^{k+1} + \cdots,$$

where a_0 and a_k are the two given constants.

THEOREM 1. Let $\eta(a_0, a_1) = 0$ if $|a_0| = 1$. In case $|a_0| < 1$, let $\eta(a_0, a_1) = \{1 - |a_0|^2\} / |a_1|$, and if $|a_0| > 1$, let $\eta(a_0, a_1) = \{2|a_0|\log|a_0|\} / |a_1|$. Then in or on the circle $|x| = \eta(a_0, a_1)$, either $F_1(x)$ has a singularity or $|F_1(x)|$ assumes the value one. Moreover, no smaller radius will do for the whole class of functions C_1 .

COROLLARY. $\eta(a_0, 1) = |a_1| \eta(a_0, a_1).$

PROOF. If $|a_0| = 1$, the theorem is granted, so we shall henceforth suppose that this is not the case. If $a_0 = re^{i\alpha}$, $(r \ge 0)$, we define $E(x) = e^{-i\alpha}F_1(x)$. Then $|E(x)| = |F_1(x)|$ and hence we may, with no loss of generality in the proof, suppose that a_0 is real and non-negative.

CASE 1. $0 \le a_0 < 1$. There exists a positive number η such that for $|x| \le \eta$, $F_1(x)$ is regular and $|F_1(x)| < 1$. Now form

(1)
$$G(x) = \frac{F_1(x) - a_0}{-a_0 F_1(x) + 1}$$

1937.]

[†] See Duke Mathematical Journal, vol. 2 (1936), pp. 435-442.