SOME FORMULAS FOR FACTORABLE POLYNOMIALS IN SEVERAL INDETERMINATES[†]

BY LEONARD CARLITZ

1. Introduction. By a factorable polynomial[‡] in the $GF(p^n)$ will be meant a polynomial in the indeterminates x_1, \dots, x_k , which factors into a product of linear factors in some (sufficiently large) Galois field:

$$G \equiv G(x_1, \cdots, x_k) \equiv \prod_{j=1}^m (\alpha_{j0} + \alpha_{j1}x_1 + \cdots + \alpha_{jk}x_k).$$

It is frequently convenient to consider separately those G (of degree m) in which x_k^m (or any assigned x_i^m) actually occurs; we use the notation G^* to denote such a polynomial. In the case k = 1, the polynomials G reduce to ordinary polynomials in a single indeterminate; in this case G and G^* are identical.

In this note we extend certain results§ for k=1 to the case k>1. For polynomials G^* the extensions may (roughly) be obtained by merely replacing p^n by p^{nk} ; for arbitrary G the generalizations are not quite so simple.

2. The μ -Function. For G of degree m, we put $|G| = p^{nm}$; then

(1)
$$\zeta^*(w) = \sum_{G^*} \frac{1}{|G|^w} = (1 - p^{n(k-w)})^{-1},$$

(2)
$$\zeta(w) = \sum_{G} \frac{1}{|G|^{w}} = \{(1 - p^{n(1-w)})(1 - p^{n(2-w)}) \cdots (1 - p^{n(k-w)})\}^{-1},$$

the sums extending over all G^* , G, respectively.

Let f(m) be the number of (non-associated) G of degree m, $f^*(m)$ the number of G^* ; from the first of these formulas it follows that $f^*(m) = p^{nkm}$, and from the second, $f(m) = [k+m-1, m]p^{nm}$, where

[†] Presented to the Society, December 31, 1936.

[‡] Duke Mathematical Journal, vol. 2 (1936), pp. 660-670.

[§] American Journal of Mathematics, vol. 54 (1932), pp. 39–50; this Bulletin, vol. 38 (1932), pp. 736–744.