SOME FORMULAS FOR FACTORABLE POLYNOMIALS IN SEVERAL INDETERMINATES \dagger

BY LEONARD CARLITZ

1. Introduction. By a factorable polynomial \ddagger in the $G F\left(p^{n}\right)$ will be meant a polynomial in the indeterminates x_{1}, \cdots, x_{k}, which factors into a product of linear factors in some (sufficiently large) Galois field :

$$
G \equiv G\left(x_{1}, \cdots, x_{k}\right) \equiv \prod_{j=1}^{m}\left(\alpha_{j 0}+\alpha_{j 1} x_{1}+\cdots+\alpha_{j k} x_{k}\right)
$$

It is frequently convenient to consider separately those G (of degree m) in which $x_{k^{m}}^{m}$ (or any assigned x_{i}^{m}) actually occurs; we use the notation G^{*} to denote such a polynomial. In the case $k=1$, the polynomials G reduce to ordinary polynomials in a single indeterminate; in this case G and G^{*} are identical.

In this note we extend certain results§ for $k=1$ to the case $k>1$. For polynomials G^{*} the extensions may (roughly) be obtained by merely replacing p^{n} by $p^{n k}$; for arbitrary G the generalizations are not quite so simple.
2. The μ-Function. For G of degree m, we put $|G|=p^{n m}$; then

$$
\begin{align*}
\zeta^{*}(w) & =\sum_{G^{*}} \frac{1}{|G|^{w}}=\left(1-p^{n(k-w)}\right)^{-1} \tag{1}\\
\zeta(w) & =\sum_{G} \frac{1}{|G|^{w}} \\
& =\left\{\left(1-p^{n(1-w)}\right)\left(1-p^{n(2-w)}\right) \cdots\left(1-p^{n(k-w)}\right)\right\}^{-1},
\end{align*}
$$

the sums extending over all G^{*}, G, respectively.
Let $f(m)$ be the number of (non-associated) G of degree $m, f^{*}(m)$ the number of G^{*}; from the first of these formulas it follows that $f^{*}(m)=p^{n k m}$, and from the second, $f(m)=[k+m-1, m] p^{n m}$, where
\dagger Presented to the Society, December 31, 1936.
\ddagger Duke Mathematical Journal, vol. 2 (1936), pp. 660-670.
§ American Journal of Mathematics, vol. 54 (1932), pp. 39-50; this Bulletin, vol. 38 (1932), pp. 736-744.

