AN APPLICATION OF DERIVATIVES OF NON-ANALYTIC FUNCTIONS IN PLANE STRESS PROBLEMS*

BY V. P. JENSEN AND D. L. HOLL

1. The Plane Stress Problem. A plane state of stress is defined in a region in the xy plane by an Airy's stress function F(x, y), where F satisfies

(1)
$$\nabla^4 F(x, y) = \nabla^2 \nabla^2 F = \nabla^2 (F_{xx} + F_{yy}) = 0.$$

The normal stresses σ_x and σ_y in the directions of x and y, respectively, and the corresponding shearing stress τ_{xy} are obtained from F when no body forces are present by the following:

(2)
$$\sigma_x = F_{yy}, \quad \sigma_y = F_{xx}, \quad \tau_{xy} = -F_{xy}$$

Equilibrium conditions show that the stress tensor at any point may be referred to any set of orthogonal planes by the relations

(3)

$$\sigma_{x'}, \sigma_{y'} = \frac{\sigma_x + \sigma_y}{2} \pm \frac{\sigma_x - \sigma_y}{2} \cos 2\theta \pm \tau_{xy} \sin 2\theta,$$

$$\tau_{x'y'} = \frac{\sigma_y - \sigma_x}{2} \sin 2\theta + \tau_{xy} \cos 2\theta,$$

where the x'y' axes have been rotated through the positive angle θ from the xy axes.

2. The Stress Circle and Kasner's Derivative Circle. A graphical construction due to Mohr[‡] is frequently employed in place of equations (3). In the complex plane $\gamma = \sigma + i\tau$, describe a circle having its center on the σ axis and passing through the points (σ_x, τ_{xy}) and $(\sigma_y, -\tau_{xy})$ which are designated respectively as points C and E. Then, corresponding to a counter-clockwise ro-

^{*} Presented to the Society, November 28, 1936.

[†] Subscripts on F denote partial derivatives with respect to the indicated variables. The subscripts on the stresses σ and τ refer to directions along which the stresses act.

[‡]O. Mohr, Abhandlungen aus dem Gebiete der Technische Mechanik, 2d edition, 1914.