A GENERALIZATION OF SCHWARZ'S LEMMA*

BY CONSTANTIN CARATHÉODORY

1. Introduction. We consider the family of functions f(z), which are regular inside of the unit circle, which vanish at the origin, and whose absolute value |f(z)| is less than one in that circle. Taking two points z_1 and z_2 in the interior of the unit circle we inquire about the maximum $M(z_1, z_2)$ of the expression

(1)
$$\left| \frac{f(z_2) - f(z_1)}{z_2 - z_1} \right|$$

if f(z) describes the family of functions considered above.

This maximum can never be less than one, because the function $f(z) \equiv z$ itself is contained among the functions of our family. But in a great number of cases $M(z_1, z_2)$ is *exactly equal* to one. Thus if z_1 is taken equal to zero, the assertion that $M(0, z_2) = 1$ is only another way of formulating the lemma of Schwarz. Again, if we assume that the ratio z_2/z_1 is real and negative, we have

$$| f(z_2) - f(z_1) | \leq | f(z_1) | + | f(z_2) |, | z_2 - z_1 | = | z_1 | + | z_2 |;$$

and, using the lemma of Schwarz, we find that $M(z_1, z_2) = 1$.

In the third place, we have $M(z_1, z_2) = 1$ if *both* points z_1 and z_2 lie on the circular disc $|z| \leq 2^{1/2} - 1$. This is an easy consequence of the fact that for all points of this figure the expression |f'(z)| is never greater than one.[†] We are going to analyze the questions which arise from these different examples by determining completely all the cases for which $M(z_1, z_2) = 1$.

2. An Auxiliary Function. We begin with the obvious remark that our result will not be altered if we neglect from the outset all the functions of the form $f(z) = e^{i\theta}z$ for which the ex-

^{*} From an address delivered before the Society under the title *Bounded* analytic functions, on November 27, 1936, by invitation of the Program Committee.

[†] J. Dieudonné, Recherches sur quelques problèmes relatifs aux polynomes et aux fonctions bornées d'une variable complexe, Annales de l'École Normale, (3), vol. 48 (1931), pp. 247–358; in particular, p. 352.