A GENERALIZATION OF SCHWARZ'S LEMMA*

BY CONSTANTIN CARATHÉODORY

1. Introduction. We consider the family of functions $f(z)$, which are regular inside of the unit circle, which vanish at the origin, and whose absolute value $|f(z)|$ is less than one in that circle. Taking two points z_{1} and z_{2} in the interior of the unit circle we inquire about the maximum $M\left(z_{1}, z_{2}\right)$ of the expression

$$
\begin{equation*}
\left|\frac{f\left(z_{2}\right)-f\left(z_{1}\right)}{z_{2}-z_{1}}\right| \tag{1}
\end{equation*}
$$

if $f(z)$ describes the family of functions considered above.
This maximum can never be less than one, because the function $f(z) \equiv z$ itself is contained among the functions of our family. But in a great number of cases $M\left(z_{1}, z_{2}\right)$ is exactly equal to one. Thus if z_{1} is taken equal to zero, the assertion that $M\left(0, z_{2}\right)=1$ is only another way of formulating the lemma of Schwarz. Again, if we assume that the ratio z_{2} / z_{1} is real and negative, we have

$$
\begin{aligned}
\left|f\left(z_{2}\right)-f\left(z_{1}\right)\right| & \leqq\left|f\left(z_{1}\right)\right|+\left|f\left(z_{2}\right)\right| \\
\left|z_{2}-z_{1}\right| & =\left|z_{1}\right|+\left|z_{2}\right|
\end{aligned}
$$

and, using the lemma of Schwarz, we find that $M\left(z_{1}, z_{2}\right)=1$.
In the third place, we have $M\left(z_{1}, z_{2}\right)=1$ if both points z_{1} and z_{2} lie on the circular disc $|z| \leqq 2^{1 / 2}-1$. This is an easy consequence of the fact that for all points of this figure the expression $\left|f^{\prime}(z)\right|$ is never greater than one. \dagger We are going to analyze the questions which arise from these different examples by determining completely all the cases for which $M\left(z_{1}, z_{2}\right)=1$.
2. An Auxiliary Function. We begin with the obvious remark that our result will not be altered if we neglect from the outset all the functions of the form $f(z)=e^{i \theta} z$ for which the ex-

[^0]
[^0]: * From an address delivered before the Society under the title Bounded analytic functions, on November 27, 1936, by invitation of the Program Committee.
 \dagger J. Dieudonné, Recherches sur quelques problèmes relatifs aux polynomes et aux fonctions bornées d'une variable complexe, Annales de l'École Normale, (3), vol. 48 (1931), pp. 247-358; in particular, p. 352.

