ON THE EXPANSION OF A FUNCTION ANALYTIC AT DISTINCT POINTS

BY P. W. KETCHUM

1. Introduction. Let $a_{1}, a_{2}, \cdots, a_{\nu}$ be a set of distinct points in the complex plane.* If $\theta_{k}(x)$ is any function which is analytic at a_{k} and has a simple zero at a_{k}, then for any sufficiently small positive number δ the level curve $\left|\theta_{k}(x)\right|=\delta$ will have one branch, $C_{\delta}{ }^{(k)}$, which satisfies the conditions (a) a_{k} is interior to the curve $C_{\delta}{ }^{(k)}$, (b) $C_{\delta}{ }^{(k)}$ is a simple closed analytic curve, (c) a_{k} is the only zero of $\theta_{k}(x)$ either inside or on $C_{\delta}{ }^{(k)}$. Furthermore, if δ^{\prime} and $\delta^{\prime \prime}$ are any two values of δ such that $\delta^{\prime \prime}>\delta^{\prime}$, then $C_{\delta^{\prime},}(k)$ contains $C_{\delta^{\prime}}(k)$ in its interior.

Let $F_{n, m}(x),(n=0,1,2, \cdots ; m=1,2, \cdots, \nu)$, be a set of functions all of which are holomorphic in and on each of the curves $C_{R^{(k)}}$, and let each function have a zero of order n at a_{m} and a zero of higher order than n at all the other points a_{k}, ($k \neq m$). Then in and on $C_{R}{ }^{(m)}$, we have the Bürmann series \dagger

$$
\begin{equation*}
F_{n, m}(x)=\sum_{s=0}^{\infty} c_{n, s}^{(m, m)}\left[\theta_{m}(x)\right]^{n+s} \equiv\left[\theta_{m}(x)\right]^{n} P_{n, m, m}(x) \tag{1}
\end{equation*}
$$

where $c_{n, 0}^{(m, m)} \neq 0$. In and on $C_{R}^{(k)},(k \neq m)$, we have

$$
\begin{equation*}
F_{n, m}(x)=\sum_{s=0}^{\infty} c_{n, s}^{(m, k)}\left[\theta_{k}(x)\right]^{n+s+1} \equiv\left[\theta_{k}(x)\right]^{n+1} P_{n, m, k}(x) \tag{2}
\end{equation*}
$$

We assume that these functions have been normalized so that $c_{n, 0}^{(m, m)}=1$. Denote by $b_{n, s},(n=0,1, \cdots ; s=0,1, \cdots)$, any set of positive numbers, independent of k, such that $b_{n, 0}=1$ and

$$
b_{n, s} \geqq\left|\sum_{m=1}^{\nu} c_{n, s-1+\delta(m, k)}^{(m, k)}\right|
$$

for $s>0$, where $\delta(m, k)$ is Kronecker's symbol. Put

[^0]
[^0]: * In the work to follow the points a_{k} are assumed finite but the extension to the case where one point a_{k} is the point at infinity is immediate.
 \dagger Whittaker and Watson, Modern Analysis, 4th ed., p. 131.

