[February,

CURVES BELONGING TO PENCILS OF LINEAR LINE COMPLEXES IN S_4

BY C. R. WYLIE, JR.

1. Introduction. It has been demonstrated in at least two ways^{*} that every curve in S_3 , whose tangents belong to a non-special linear line complex can be mapped into a curve in S_3 all of whose tangents meet a fixed conic. In this paper, similar theorems are obtained for curves in S_4 whose tangents belong to (1) a single linear complex, (2) a pencil of linear complexes.

In what follows we shall use the symbol Γ to represent a nonspecial complex, that is, a complex which does not consist of the totality of lines which meet a plane. We shall use the symbol Π to represent a pencil of complexes which does not contain any special complexes. The customary symbol V_m^r will be used to represent a variety of order r and of dimension m.

2. Hyperpencil of Lines. We note first that no curve lying in S_4 but in no linear subspace of S_4 can belong to a special complex. For all the tangents of such a curve would have to meet the singular plane of the complex, which would require the osculating S_3 's of the curve to contain the plane. This is impossible unless the curve lies entirely in an S_3 containing the singular plane. We are thus concerned with non-special complexes in (1) and with pencils which contain no special complexes in (2).

Through an arbitrary point of S_4 pass ∞^2 lines belonging to a non-special complex Γ . These lines lie in an S_3 , the polar S_3 of the point as to Γ , and form what we shall call a hyperpencil of lines. For every complex Γ , there is a unique point with the property that every line which passes through that point belongs to Γ . We shall call this point the vertex of Γ . Of the five types of pencils of complexes in S_4 all but one contain special complexes. The one admissible type, Π , consists of ∞^1 complexes whose vertices lie on a non-composite conic, K. Through an ar-

* V. Snyder, Twisted curves whose tangents belong to a linear complex, American Journal of Mathematics, vol. 29 (1907), pp. 279–288.

C. R. Wylie, Jr., Space curves belonging to a non-special linear line complex, American Journal of Mathematics, vol. 57 (1935), pp. 937-942.