ON THE SUMMABILITY OF FOURIER SERIES

BY W. C. RANDELS

1. Introduction. It is well known that the Abel method of summability is stronger than the Cesàro methods of any order. An example has been given* to show that there are series which are Abel summable but not Cesàro summable for any order. This series is one for which $a_{n} \neq o\left(n^{\alpha}\right)$ for any α, and hence which cannot be (C, α) summable for any α. This series cannot be a Fourier series since for all Fourier series $a_{n}=o(1)$. We propose to give an example of the existence of a Fourier series which is Abel summable but not Cesàro summable.

We shall make use of some results of Paley \dagger which show that, if the Fourier series of $f(x)$,

$$
\begin{equation*}
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{1}
\end{equation*}
$$

is (C, α) summable at the point x, then, for $\beta>\alpha$,

$$
\begin{aligned}
R_{\beta}(f, t) & =\beta \int_{0}^{t}\{f(x+\tau)+f(x-\tau)-2 f(x)\}(t-\tau)^{\beta-1} d \tau \\
& =o\left(t^{\beta}\right), \quad \text { as } \quad t \rightarrow 0
\end{aligned}
$$

and conversely, if $R_{\alpha}(f, t)=o\left(t^{\alpha}\right)$, as $t \rightarrow 0$, then the series (1) is (C, β) summable for every $\beta>\alpha+1$. We shall first show that for every $n>1$ there is a function $f_{n}(x)$ such that at $x=0$

$$
\begin{equation*}
\varlimsup_{i \rightarrow 0}\left|\frac{1}{t^{j}} R_{j}\left(f_{n}, t\right)\right|=\infty, \quad(j \leqq n-1) \tag{2}
\end{equation*}
$$

but

$$
\begin{equation*}
R_{n}\left(f_{n}, t\right)=o\left(t^{n}\right), \quad \text { as } \quad t \rightarrow 0 \tag{3}
\end{equation*}
$$

This implies that the Fourier series of $f_{n}(x)$ is ($C, n+2$) summable at $x=0$ and therefore Abel summable. The function

[^0]
[^0]: * See Landau, Darstellung und Begründung einiger neuer Ergebnisse der Funktionentheorie, 1929, p. 51.
 \dagger R. E. A. C. Paley, On the Cesàro summability of Fourier series and allied series, Proceedings of the Cambridge Philosophical Society, vol. 26 (1929), pp. 173-203.

