A MEAN VALUE THEOREM FOR POLYNOMIALS AND HARMONIC POLYNOMIALS

BY J. L. WALSH

1. Introduction. We define a polynomial in z of degree n as any function that can be expressed in the form $a_{0} z^{n}+a_{1} z^{n-1}+\cdots$ $+a_{n}$; we do not require $a_{0} \neq 0$. With this definition the following theorems are valid, as is our purpose to show in the present note:

Theorem 1. If $f(z)$ is an analytic function of z for the value $z=z_{0}$, then we have

$$
\begin{align*}
& \lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)+f\left(z_{0}+\omega h\right)+\cdots+f\left(z_{0}+\omega^{N-1} h\right)-N f\left(z_{0}\right)}{h^{N}} \\
&=\frac{f^{(N)}\left(z_{0}\right)}{(N-1)!} \tag{1}
\end{align*}
$$

where ω denotes the number $e^{2 \pi i / N}$.
A function $f(z)$ is said to have the polygonal mean value property or more simply the mean value property if for fixed N and for every z_{0} the value of $f\left(z_{0}\right)$ is the mean of the values of $f(z)$ at the vertices of every regular polygon of N sides whose center is z_{0}.

Theorem 2. A necessary and sufficient condition that a function analytic for all values of z have the mean value property is that it be a polynomial of degree $N-1$.

Theorem 3. A necessary and sufficient condition that a real function $f(z) \equiv u(x, y)$ continuous for all values of $z(=x+i y)$ have the mean value property is that it be a harmonic polynomial of degree $N-1$.

A harmonic polynomial in x and y of degree $N-1$ is defined as the real part of a polynomial in z of degree $N-1$.
2. Proof of Theorem 1. In preparation for the proof of Theorem 1 we first formulate a following well known and easily proved lemma.

