## GENERALIZED JACOBI POLYNOMIALS

## D. N. SEN AND V. RANGACHARIAR

1. Introduction. The differential equation

$$
\left(\alpha x^{2}+\beta x+\gamma\right) \frac{d^{2} y}{d x^{2}}-\left(x+a_{1}\right) \frac{d y}{d x}+\{n-n(n-1) \alpha\} y=0
$$

where $n$ is a positive integer, has polynomial solutions $y_{n}$ of degree $n$. Some properties of these polynomials have been obtained by Brenke* and by Lawton. $\dagger$ The object of this paper is to derive fresh properties and in particular to study the zeros of these polynomials. Brenke proved that

$$
h_{n} y_{n}=\frac{1}{\rho} D^{n}\left\{\rho P^{n}\right\},
$$

where

$$
\begin{aligned}
P & \equiv \alpha x^{2}+\beta x+\gamma \equiv-\alpha(x-a)(b-x), \quad(a<b) \\
\rho & \equiv-\frac{1}{\alpha}(x-a)^{A-1}(b-x)^{B-1} \\
A & =\frac{a+a_{1}}{\alpha(b-a)}, \quad B=\frac{b+a_{1}}{-\alpha(b-a)},
\end{aligned}
$$

and $h_{n}$ is the coefficient of $x^{n}$ in the right-hand side. It has also been proved by him that if $A$ and $B$ are positive, the following recurrence formula holds good.

$$
\begin{equation*}
y_{n}=\left(a_{n}+x\right) y_{n-1}-b_{n} y_{n-2} \tag{A}
\end{equation*}
$$

where

$$
\begin{aligned}
& b_{n}=\frac{c_{n-2}^{2}}{c_{n-1}^{2}} \quad \text { and } \quad \frac{1}{c_{n}^{2}}=\int_{a}^{b} \rho y_{n}^{2} d x \\
& a_{n}=-c_{n-1}^{2} k_{n-1}, \quad \text { where } \quad k_{n}=\int_{a}^{b} x \rho y_{n}^{2} d x .
\end{aligned}
$$

[^0]
[^0]:    * This Bulletin, vol. 36 (1930).
    $\dagger$ This Bulletin, vol. 38 (1932).

