exp (nW), *n* any integer. Then *N* is a discrete subgroup of the central of *G*, and so (see [1], p. 12) G/N is a Lie group locally topologically isomorphic with *G*.

But the homomorphism $G \rightarrow G/N$ carries S_3 into S_3/N , which is simply isomorphic with $G_3/N = G_3^*$. This and the corollary to Theorem 1 complete the proof.

E. Cartan [5] has shown that the universal covering group of the group of projective transformations of the line is topologically isomorphic in the large with no linear group.

BIBLIOGRAPHY

[1] E. Cartan, Théorie des groupes finis et continus et l'analysis situs, Mémorial des Sciences Mathématiques, no. 42, 1930.

[2] L. P. Eisenhart, Continuous Groups of Transformations, 1933.

[3] W. Mayer and T. Y. Thomas, Foundations of the theory of continuous groups, Annals of Mathematics, vol. 36 (1935), pp. 770-822.

[4] A. Speiser, Gruppentheorie, 2d ed., 1927.

[5] La Topologie des Groupes de Lie, Paris, 1936, p. 18.

Society of Fellows, Harvard University

CHARACTERISTICS OF BIRATIONAL TRANSFORMS IN S_r

BY B. C. WONG

1. Introduction. Consider a k-dimensional variety, V_k^n , of order n in an r-space, S_r . Let us project V_k^n from a general (r-k-t-1)-space of S_r upon a general (k+t)-space of S_r and denote the projection by ${}_tV_k^n$. We are supposing that $1 \le t \le k$. Then upon ${}_tV_k^n$ lies a double variety, D_{k-t} , of dimension k-t and order b_t and upon D_{k-t} lies a pinch variety, W_{k-t-1} , of dimension k-t-1 and order j_{t+1} . Since the symbol W_{-1} is without meaning, we thus obtain 2k-1 characteristics b_1, b_2, \cdots, b_k , j_2, j_3, \cdots, j_k . The symbol j_1 has a meaning which will be explained subsequently.

Now let a general (r-k+q-2)-space, $S_{r-k+q-2}$, $(1 \le q \le k)$, be given in S_r . Through this $S_{r-k+q-2}$ pass ∞k^{-q+1} primes of S_r and ∞k^{-q} of these are tangent to V_k^n . The points of contact form a (k-q)-dimensional variety, U_{k-q} . Denote its order by m_q . Thus