ON THE GENERATION OF THE FUNCTIONS *Cpq* AND *Np* OF LUKASIEWICZ AND TARSKI BY MEANS OF A SINGLE BINARY OPERATION

BY J. C. C. McKINSEY*

Indicating the *n* "truth-values" of a Lukasiewicz-Tarski logic[†] by the *n* numbers $1, 2, \dots, n$, we define the functions Cpq and Np as follows:

$$Cpq = 1$$
, when $p \ge q$,
 $Cpq = q - p + 1$, when $p < q$,
 $Np = n - p + 1$.

Thus, for example, for n = 3 we have

C	1	2	3	Þ	NÞ
1	1	2	3	1	3
2	1	1	2	2	2
3	1	1	1	3	1

I shall denote a Lukasiewicz-Tarski logic of n truth-values by L_n .

In this paper I define, \ddagger in terms of Cpq and Np, a function E_ipq such that, in each L_n , Cpq and Np are in turn definable in terms of $E_{n-2}pq$. The function E_ipq is defined by means of the following series of definitions.

DEFINITION 1. $A_0 p = p$, $A_{i+1} p = CNpA_i p$. DEFINITION 2. $B_0 p = Np$, $B_{i+1} p = CpB_i p$. DEFINITION 3. $D_i p = CA_i pNCpNB_i p$. DEFINITION 4. $E_i pq = CpD_i q$.

* Blumenthal Research Fellow.

[†] For a general discussion of this logic, see Lewis and Langford, Symbolic Logic, pp. 199-234.

[‡] D. L. Webb has recently found (*The generation of any n-valued logic by one binary operation*, Proceedings of the National Academy of Sciences, vol. 21 (1935), pp. 252–254) a binary operation by means of which it is possible to generate any operation of any *n*-valued logic. His operation, however, cannot be defined in terms of Cpq and Np except when n=2. This can be seen from the fact that the operations Cpq and Np are class-closing on the elements 1, *n*; whereas the operation found by Webb has not this property.