$[(5), 9]$.	$r-3 s .=. i$
$[(4),(6)]$	$p-3 q .=. r-3 s$
$[11.03]$	$(7)=(1)(2)$
$[(7),(8)]$	$(1)(2)$
$[11.2]$	$(1)(2)-3(1)$
$[12.17]$	$(1)(2)-3(2)$
$[(9),(10)]$	(1)
$[(9),(11)]$	(2).

The paradox stated above is a particular case of Theorem 10, and therefore requires no further proof.

National Wu-Han University, Wuchang, China

THE BETTI NUMBERS OF CYCLIC PRODUCTS

bY R. J. WALKER

1. Introduction. In a recent paper $\dagger \mathrm{M}$. Richardson has discussed the symmetric product of a simplicial complex and has obtained explicit formulas for the Betti numbers of the twoand three-fold products. Acting on a suggestion of Lefschetz, we define a more general type of topological product and apply Richardson's methods to compute the Betti numbers of a certain one of these, the "cyclic" product.
2. Basis for m-Cycles of General Products. Let S be a topological space and G a group of permutations on the numbers $1, \cdots, n$. The product of S with respect to $G, G(S)$, is the set of all n-tuples (P_{1}, \cdots, P_{n}) of points of S, where $\left(P_{i_{1}}, \cdots, P_{i_{n}}\right)$ is to be regarded as identical with $\left(P_{1}, \cdots, P_{n}\right)$ if and only if the permutation $\binom{1 \ldots n}{i_{1} \ldots i_{n}}$ is an element of G. A neighborhood of $\left(P_{1}, \cdots, P_{n}\right)$ is the set of all points (Q_{1}, \cdots, Q_{n}) for which Q_{i} belongs to a fixed neighborhood of P_{i}. It is not difficult to verify that the
[^0]
[^0]: \dagger M. Richardson, On the homology characters of symmetric products, Duke Mathematical Journal, vol. 1 (1935), pp. 50-69. We shall refer to this paper as R .

