ON THE MODULUS OF THE DERIVATIVE OF A POLYNOMIAL*

BY W. E. SEWELL

1. Introduction. Let $P_{n}(z)$ be an arbitrary polynomial of degree n in z and let $\left|P_{n}(z)\right| \leqq M$ on a set C. The modulus of $P_{n}^{\prime}(z) \dagger$ on C has an upper bound depending on M, on n, and on the set C. In this connection A. Markoff \ddagger has proved the following theorem.

Let $\left|P_{n}(z)\right| \leqq 1$ in the interval $-1 \leqq z \leqq+1$. Then $\left|P_{n}^{\prime}(z)\right| \leqq n^{2}$ for $-1 \leqq z \leqq+1$. This bound is attained only by the polynomial $\pm \alpha \cos n \operatorname{arc} \cos z,|\alpha|=1$.

A second fundamental result is the following theorem of S . Bernstein.§

Let $\left|P_{n}(z)\right| \leqq 1$ on $C:|z| \leqq 1$. Then $\left|P_{n}^{\prime}(z)\right| \leqq n$ on C. This bound is attained only by the polynomial $\alpha z^{n},|\alpha|=1$.

These theorems have been generalized in various directions by P. Montel, \| G. Szegö, © Dunham Jackson,** and the author. $\dagger \dagger$ Here we will prove the following generalization.

Theorem A. Let $P_{n}(z)$, a polynomial of degree n in z, be in modulus less than a constant M on a set C which has no isolated points and whose complement has finite connectivity. Then

[^0]
[^0]: * Presented to the Society, December 31, 1935.
 $\dagger P_{n}^{\prime}(z)$ denotes the first derivative of $P_{n}(z)$.
 \ddagger A. Markoff, Abhandlungen der Akademie der Wissenschaften zu St. Petersburg, vol. 62 (1889), pp. 1-24. Markoff considers only polynomials with real coefficients. For the general case see M. Riesz, Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 23 (1914), pp. 354-368; see especially p. 357.
 § S. Bernstein, Lȩ̧ons sur les Propriétés Extrémales, 1926, pp. 44-46.
 || P. Montel, Bulletin de la Société Mathématique de France, vol. 46 (1919), pp. 151-196.

 IT G. Szegö, Mathematische Zeitschrift, vol. 23 (1925), pp. 45-61.
 ** Dunham Jackson, this Bulletin, vol. 36 (1930), pp. 851-857; vol. 37 (1931), pp. 883-890.
 $\dagger \dagger$ W. E. Sewell, Proceedings National Academy of Sciences, vol. 21 (1935), pp. 255-258.

