ON DERIVATIVES OF ORTHOGONAL POLYNOMIALS*

BY H. L. KRALL

1. Introduction. A set $\phi_{0}(x)=1, \phi_{1}(x), \phi_{2}(x)$ of polynomials of degrees $0,1,2, \cdots$, is called a set of orthogonal polynomials if they satisfy

$$
\int_{a}^{b} \phi_{m}(x) \phi_{n}(x) d \psi(x)=0, \quad \int_{a}^{b} d \psi(x)>0, \quad(m \neq n)
$$

where $\psi(x)$ is a non-decreasing function of bounded variation. There is no restriction in assuming the highest coefficient 1.

It has been shown by W. Hahn \dagger that if the derivatives also form a set of orthogonal polynomials, then the original set were Jacobi, Hermite, or Laguerre polynomials. His method consisted in showing that the polynomials satisfy a differential equation of the type

$$
\left(a+b x+c x^{2}\right) \phi_{n}^{\prime \prime}+(d+e x) \phi_{n}^{\prime}+\lambda_{n} \phi_{n}=0
$$

From this it followed that the set were Jacobi, Hermite, or Laguerre polynomials.

Here we propose to give a new proof of this result, our point of view being to answer the question: What conditions on the weight function result from assuming that both $\left\{\phi_{n}(x)\right\}$ and $\left\{\phi_{n}{ }^{\prime}(x)\right\}$ are sets of orthogonal polynomials? However, we shall assume that (a, b) is a finite interval and $d \psi(x)=p(x) d x, \ddagger$ where the weight function is L-integrable.
2. A Relation for the Weight Function $q(x)$. Let the set $\left\{\phi_{n}{ }^{\prime}(x)\right\}$ be orthogonal in the interval (c, d), infinite or not, with the weight function $q(x)$, that is,

$$
\int_{c}^{d} q(x) \phi_{n}^{\prime}(x) \phi_{m}^{\prime}(x) d x=0, \quad(m \neq n)
$$

[^0]
[^0]: * Presented to the Society, April 11, 1936.
 \dagger W. Hahn, Über die Jacobischen Polynome und zwei verwandte Polynomklassen, Mathematische Zeitschrift, vol. 39 (1935), pp. 634-638.
 \ddagger Professor Shohat informs me that he has discussed the general case $d \psi(x)$.

