ON DERIVATIVES OF ORTHOGONAL POLYNOMIALS*

BY H. L. KRALL

1. Introduction. A set $\phi_0(x) = 1$, $\phi_1(x)$, $\phi_2(x)$ of polynomials of degrees 0, 1, 2, \cdots , is called a set of orthogonal polynomials if they satisfy

$$\int_a^b \phi_m(x)\phi_n(x)d\psi(x) = 0, \qquad \int_a^b d\psi(x) > 0, \qquad (m \neq n),$$

where $\psi(x)$ is a non-decreasing function of bounded variation. There is no restriction in assuming the highest coefficient 1.

It has been shown by W. Hahn[†] that if the derivatives also form a set of orthogonal polynomials, then the original set were Jacobi, Hermite, or Laguerre polynomials. His method consisted in showing that the polynomials satisfy a differential equation of the type

$$(a + bx + cx^2)\phi_n^{\prime\prime} + (d + ex)\phi_n^{\prime} + \lambda_n\phi_n = 0.$$

From this it followed that the set were Jacobi, Hermite, or Laguerre polynomials.

Here we propose to give a new proof of this result, our point of view being to answer the question: What conditions on the weight function result from assuming that both $\{\phi_n(x)\}$ and $\{\phi'_n(x)\}$ are sets of orthogonal polynomials? However, we shall assume that (a, b) is a finite interval and $d\psi(x) = p(x)dx$, \ddagger where the weight function is *L*-integrable.

2. A Relation for the Weight Function q(x). Let the set $\{\phi'_n(x)\}$ be orthogonal in the interval (c, d), infinite or not, with the weight function q(x), that is,

$$\int_{c}^{d} q(x)\phi_{n}'(x)\phi_{m}'(x)dx = 0, \qquad (m \neq n).$$

^{*} Presented to the Society, April 11, 1936.

[†] W. Hahn, Über die Jacobischen Polynome und zwei verwandte Polynomklassen, Mathematische Zeitschrift, vol. 39 (1935), pp. 634-638.

[‡] Professor Shohat informs me that he has discussed the general case $d\psi(x)$.