second series is identically zero, so the inversion formula does not give an actual solution. Under these circumstances we are forced to leave the question of the completeness of S_1+1 in C[0, 1] unanswered.*

YALE UNIVERSITY AND MASSACHUSETTS INSTITUTE OF TECHNOLOGY

GROUPS OF MOTIONS IN CONFORMALLY FLAT SPACES

BY JACK LEVINE

1. Introduction. In this paper we consider the problem of determining the conditions which a conformally flat space must satisfy in order that it may admit a group of motions. These conditions are expressed in Theorem 1. Conformally flat spaces admitting simply transitive groups of motions are considered in the last section. All summations are from 1 through n unless otherwise indicated.

2. *Killing's Equations*. The equations for determining the possible existence of groups of motions in a metric space are known as Killing's equations and are given by[†]

(1)
$$\xi^k \frac{\partial g_{ij}}{\partial x^k} + g_{ik} \frac{\partial \xi^k}{\partial x^j} + g_{jk} \frac{\partial \xi^k}{\partial x^i} = 0.$$

If V_n is conformally flat, there exists a coordinate system in which $g_{ij} = e_i \delta_j^i h^2$, where $e_i = \pm 1$. In this coordinate system (1) reduce to

(2)
$$e_i \frac{\partial \xi^i}{\partial x^j} + e_j \frac{\partial \xi^j}{\partial x^i} = 0, \qquad (i \neq j, i, j \text{ not summed}),$$

(3)
$$\xi^k \frac{\partial H}{\partial x^k} + \frac{\partial \xi^i}{\partial x^i} = 0, \qquad (i \text{ not summed}, H = \log h).$$

418

^{*} The completeness of $1+S(\beta+1, \beta, \lambda)$ in C[0, 1] is proved for $-1 < \beta \le 2$ in a paper to appear in the Annals of Mathematics.

[†] L. P. Eisenhart, Riemannian Geometry, p. 234.