4. Remark. Let the sequence E_{1}, E_{2}, \cdots be as in $\S 2$. Then we can even assert that for every $\lambda<1$ there exists an infinite subsequence $E_{i_{1}}, E_{i_{2}}, \cdots$ such that for every p and q

$$
\mu\left(E_{i_{p}} E_{i_{q}}\right) \geqq \lambda m^{2}
$$

We show first that there exists an infinite subsequence $E_{k_{1}}, E_{k_{2}}, \cdots$ such that $\mu\left(E_{k_{1}}, E_{k_{p}}\right) \geqq \lambda m^{2}$ for every p. Suppose that no such subsequence exists; then to every $n=1,2, \cdots$ belongs a p_{n} such that

$$
\mu\left(E_{n} E_{m}\right)<\lambda m^{2} \quad \text { for } \quad m \geqq n+p_{n} .
$$

Writing $n_{1}=1, n_{2}=n_{1}+p_{n_{1}}, n_{3}=n_{2}+p_{n_{2}}, \cdots$, we have then for every i and k,

$$
\mu\left(E_{n_{i}} E_{n_{k}}\right)<\lambda m^{2},
$$

which contradicts the theorem of $\S 2$. The proof is now easily completed by applying the diagonal principle.

Cambridge, Massachusetts

ON THE ZEROS OF THE DERIVATIVE OF A RATIONAL FUNCTION*

BY MORRIS MARDEN

1. Introduction. The primary object of this note is to give a simple solution of a problem already discussed by many authors including the present one. \dagger It is the problem of determining the regions within which lie the zeros of the derivative of a rational function when the zeros and poles of the function lie in prescribed circular regions.

Theorem $1 . \ddagger$ For $j=0,1, \cdots, p$ let r_{j} and σ_{j} be real constants

[^0]
[^0]: * Presented to the Society, September 4, 1934.
 \dagger For an expository account and list of references see M. Marden, American Mathematical Monthly, vol. 42 (1935), pp. 277-286, hereafter referred to as Marden I.
 \ddagger See M. Marden, Transactions of this Society, vol. 32 (1930), pp. 81-109, hereafter referred to as Marden II.

