4. Remark. Let the sequence E_1, E_2, \cdots be as in §2. Then we can even assert that for every $\lambda < 1$ there exists an infinite subsequence E_{i_1}, E_{i_2}, \cdots such that for every p and q

$$\mu(E_{i_p}E_{i_q}) \geq \lambda m^2.$$

We show first that there exists an infinite subsequence E_{k_1}, E_{k_2}, \cdots such that $\mu(E_{k_1}, E_{k_p}) \ge \lambda m^2$ for every p. Suppose that no such subsequence exists; then to every $n = 1, 2, \cdots$ belongs a p_n such that

$$\mu(E_n E_m) < \lambda m^2 \quad \text{for} \quad m \ge n + p_n.$$

Writing $n_1 = 1$, $n_2 = n_1 + p_{n_1}$, $n_3 = n_2 + p_{n_2}$, \cdots , we have then for every *i* and *k*,

$$\mu(E_{n_i}E_{n_k}) < \lambda m^2,$$

which contradicts the theorem of §2. The proof is now easily completed by applying the diagonal principle.

CAMBRIDGE, MASSACHUSETTS

ON THE ZEROS OF THE DERIVATIVE OF A RATIONAL FUNCTION*

BY MORRIS MARDEN

1. Introduction. The primary object of this note is to give a simple solution of a problem already discussed by many authors including the present one.[†] It is the problem of determining the regions within which lie the zeros of the derivative of a rational function when the zeros and poles of the function lie in prescribed circular regions.

THEOREM 1.‡ For $j = 0, 1, \dots, p$ let r_j and σ_j be real constants

^{*} Presented to the Society, September 4, 1934.

[†] For an expository account and list of references see M. Marden, American Mathematical Monthly, vol. 42 (1935), pp. 277–286, hereafter referred to as Marden I.

[‡] See M. Marden, Transactions of this Society, vol. 32 (1930), pp. 81–109, hereafter referred to as Marden II.