REDUCIBLE BOOLEAN FUNCTIONS

BY J. C. C. McKINSEY

In this note I establish a condition that a Boolean function of n variables, say f, be reducible to a product of two Boolean functions f_{1} and f_{2}, where f involves variables not occurring in f_{i}; and, similarly, that f be reducible to $f_{1}+f_{2}$, or to f_{1} o f_{2}, or to $f_{1} \Delta f_{2}$.* These results are of interest in connection with the general theory of Boolean operations, since every Boolean operation can be regarded as a Boolean function.

In order to state my results briefly, I use the symbol \oplus, which stands ambiguously for any one of the four operations $\times,+$, o, Δ. Thus each of my theorems really comprises four theorems, which can be obtained from the given theorem by substituting first \times for \oplus throughout, then + , then \circ, and then Δ. The theorems now follow.

Theorem 1. If a Boolean function

$$
f\left(x_{1}, \cdots, x_{n}\right)
$$

be given, then a necessary and sufficient condition that there exist a g and an h, so that

$$
f\left(x_{1}, \cdots, x_{n}\right)=g\left(x_{1}, \cdots, x_{p}\right) \oplus h\left(x_{q}, \cdots, x_{n}\right)
$$

is that

[^0]
[^0]: * The operation a o b is defined by a o $b=a b^{\prime}+a^{\prime} b$; and the operation $a \Delta b$ is defined by $a \Delta b=a b+a^{\prime} b^{\prime}$. These operations, which are mutually dual, are associative and commutative, and satisfy the further laws: $(a \circ b)^{\prime}=a \circ b^{\prime}=a \Delta b$, $a \circ 1=a \Delta 0=a^{\prime}, a \circ a=a \Delta a^{\prime}=0, a \circ 0=a \Delta 1=a$. For a further discussion, see Bernstein's paper, Postulates for Boolean algebra involving the operation of complete disjunction, to appear in the Annals of Mathematics. For a detailed treatment of $a \circ b$, see the two papers by M. H. Stone: Postulates for Boolean algebra and generalized Boolean algebra, American Journal of Mathematics, vol. 57 (1935), pp. 703-732, and Subsumption of the theory of Boolean algebras under the theory of rings, Proceedings of the National Academy of Sciences, vol. 21 (1935), pp. 103-105. Stone writes $a \Delta b$ for what I designate by $a \circ b$, and he does not discuss the relation which I denote by $a \Delta b$.

