J. W. CAMPBELL

[February,

ON THE PRINCIPLES OF HAMILTON AND CARTAN

BY J. W. CAMPBELL

1. Introduction. A holonomic dynamical system can be characterized by a Hamilton stationary action integral or by a Cartan integral invariant. A. E. Taylor* has extended Cartan's principle to the case of non-holonomic systems. It is the purpose of this paper to obtain by a different method both Taylor's extension of Cartan's principle and the corresponding extension of Hamilton's principle. The latter is an extension in a sense not hitherto obtained.

2. Extensions to Non-holonomic Systems. As we shall make the extensions by transforming non-holonomic systems into equivalent holonomic systems, we shall first state the principles for holonomic systems in the form which is most suitable for our purposes.

Suppose we have a dynamical system defined by the equations

(1)
$$\dot{q}_r = \frac{\partial H}{\partial \dot{p}_r}, \qquad \dot{p}_r = -\frac{\partial H}{\partial q_r}, \qquad (r = 1, \cdots, k).$$

Then in the qpt space these equations determine a (2k)-parameter family of trajectories.

To make use of the notation of Cartan,[†] we shall denote the parameters of the system by α , $\beta_1, \dots, \beta_{2k-1}$, where the parameters are such that for the β 's constant the trajectories given by $\alpha_0 \leq \alpha \leq \alpha_1$ form a tube of trajectories.

Also a parameter u is introduced such that $dt = \rho du$, where ρ is a function of u, α , and the β 's, arbitrary except that it is always of the same sign.

When the β 's and u are fixed and α varies from α_0 to α_1 , then a locus of corresponding points on the tube determined by the β 's is obtained. The locus is arbitrary owing to the presence of ρ ,

^{*} A. E. Taylor, On integral invariants of non-holonomic dynamical systems, this Bulletin, vol. 40 (1934), pp. 735-742.

[†] E. Cartan, Leçons sur les Invariants Intégraux, 1922.