GENERAL SOLUTION OF THE PROBLEM OF ELASTOSTATICS OF AN n-DIMENSIONAL HOMOGENEOUS ISOTROPIC SOLID IN AN n-DIMENSIONAL SPACE

BY H. M. WESTERGAARD

1. Introduction. Dealing with the important case of a threedimensional solid subject to constant body forces (such as gravity) B. Galerkin* expressed the stresses and the displacements in terms of three functions, governed by the fourthorder equation $\Delta \Delta f=$ const., and mutually independent except through the boundary conditions. He has demonstrated the fruitfulness of his method in later papers. \dagger

It is profitable to interpret Galerkin's three functions as components of a vector. Simplicity is gained and significance is added by doing this. It is proposed to call this vector the Galerkin vector. Its nature is such that only a slight amount of complexity is added in the general derivations by considering an n-dimensional space.
2. Notation. Let the following notation be used.
$i_{1}, i_{2}, \cdots, i_{m}, \cdots, i_{p}, \cdots, i_{n}=$ unit vectors in n directions perpendicular to one another; $m \neq p$.
$\boldsymbol{R}=i_{1} x_{1}+i_{2} x_{2}+\cdots+i_{n} x_{n}=$ radius vector drawn from the origin to any point; the point is called point R.
$\boldsymbol{\rho}=i_{1} \xi_{1}+i_{2} \xi_{2}+\cdots+i_{n} \xi_{n}=$ displacement $=$ increment of
\boldsymbol{R}. The point \boldsymbol{R} moves to the position $\boldsymbol{R}+\boldsymbol{\varrho} \boldsymbol{\boldsymbol { \rho }}$ is assumed small.
$\boldsymbol{P}=i_{1} P_{1}+i_{2} P_{2}+\cdots+i_{n} P_{n}=$ force.
$K=i_{1} K_{1}+i_{2} K_{2}+\cdots+i_{n} K_{n}=$ body force which is distrib-

[^0]
[^0]: * B. Galerkin, Contribution à la solution générale du problème de la théorie de l'élasticité dans le cas de trois dimensions, Comptes Rendus, vol. 190 (1930), p. 1047; Contribution à l'investigation des tensions et des déformations d'un corps élastique isotrope (in Russian), Comptes Rendus de l'Académie des Sciences de l'URSS, (1930), p. 353.
 \dagger Comptes Rendus, vol. 193 (1931), p. 568; vol. 194 (1932), p. 1440; vol. 195 (1932), p. 858 ; and papers in Russian: Comptes Rendus de l'Académie des Sciences de l'URSS, (1931), p. 273 and p. 281; Messenger of Mechanics and Applied Mathematics, Leningrad, vol. 1 (1931), p. 49; Transactions of the Scientific Research Institute of Hydrotechnics, vol. 10 (1933), p. 5.

