SOME THEOREMS ON TENSOR DIFFERENTIAL INVARIANTS

BY JACK LEVINE

1. Introduction. In the theory of algebraic invariants there is a theorem which states that if an absolute invariant be written as the quotient of two relatively prime polynomials, then the numerator and denominator are relative invariants.* If we consider absolute scalar differential invariants of a metric (or affine) space, then it is possible to prove a similar theorem regarding them. In the course of the proof we give a new proof of the fact that in a relation of the form (2) the ϕ must be a power of the Jacobian of the coordinate transformation. (In the algebraic theory the u_i^i are of course constants.) This proof involves the use of the differential equations satisfied by the scalar.[†] In this proof it is not necessary to restrict B and ϕ to be polynomials in their arguments as is done in the usual proof of the corresponding theorem in the invariant theory. It is sufficient to assume that ϕ possesses first derivatives with respect to the u_j^i and that $B(\bar{g})$ is an analytic function of ϵ in the neighborhood of $\epsilon = 0$. We also extend the theorem to the case of tensor differential invariants of the form (5).

2. Scalar Differential Invariants. We consider the differential invariants of a metric space V_n with a quadratic form $g_{ij}dx^i dx^j$. Let

$$A\left(g_{ij}; \frac{\partial g_{ij}}{\partial x^k}; \cdots; \frac{\partial^p g_{ij}}{\partial x^k \cdots \partial x^l}\right)$$

be an absolute scalar invariant of V_n which we take to be rational in its arguments. We can then write A in terms of the g_{ij} and their extensions $g_{ij,k} \dots d_i$, and we have

$$A(g_{ij}; 0; g_{ij,kl}; \cdots) = \frac{B(g_{ij}; 0; g_{ij,kl}; \cdots)}{C(g_{ij}; 0; g_{ij,kl}; \cdots)},$$

^{*} See, for example, H. W. Turnbull, The Theory of Determinants, Matrices, and Invariants, p. 277.

[†] T. Y. Thomas and A. D. Michal, Differential invariants of relative quadratic differential forms, Annals of Mathematics, vol. 28 (1927), p. 679.