SOME THEOREMS ON TENSOR DIFFERENTIAL INVARIANTS

BY JACK LEVINE

1. Introduction. In the theory of algebraic invariants there is a theorem which states that if an absolute invariant be written as the quotient of two relatively prime polynomials, then the numerator and denominator are relative invariants.* If we consider absolute scalar differential invariants of a metric (or affine) space, then it is possible to prove a similar theorem regarding them. In the course of the proof we give a new proof of the fact that in a relation of the form (2) the ϕ must be a power of the Jacobian of the coordinate transformation. (In the algebraic theory the u_{j}^{i} are of course constants.) This proof involves the use of the differential equations satisfied by the scalar. \dagger In this proof it is not necessary to restrict B and ϕ to be polynomials in their arguments as is done in the usual proof of the corresponding theorem in the invariant theory. It is sufficient to assume that ϕ possesses first derivatives with respect to the u_{j}^{i} and that $B(\bar{g})$ is an analytic function of ϵ in the neighborhood of $\epsilon=0$. We also extend the theorem to the case of tensor differential invariants of the form (5).
2. Scalar Differential Invariants. We consider the differential invariants of a metric space V_{n} with a quadratic form $g_{i j} d x^{i} d x^{j}$. Let

$$
A\left(g_{i j} ; \frac{\partial g_{i j}}{\partial x^{k}} ; \cdots ; \frac{\partial^{p} g_{i j}}{\partial x^{k} \cdots \partial x^{l}}\right)
$$

be an absolute scalar invariant of V_{n} which we take to be rational in its arguments. We can then write A in terms of the $g_{i j}$ and their extensions $g_{i j, k \ldots l}$, and we have

$$
A\left(g_{i j} ; 0 ; g_{i j, k l} ; \cdots\right)=\frac{B\left(g_{i j} ; 0 ; g_{i j, k l} ; \cdots\right)}{C\left(g_{i j} ; 0 ; g_{i j, k l} ; \cdots\right)}
$$

[^0]
[^0]: * See, for example, H. W. Turnbull, The Theory of Determinants, Matrices, and Invariants, p. 277.
 \dagger T. Y. Thomas and A. D. Michal, Differential invariants of relative quadratic differential forms, Annals of Mathematics, vol. 28 (1927), p. 679.

