ON A THEOREM OF PLESSNER

By w. C. RANDELS \dagger

Plessner \ddagger has shown that if $f(x) \subset L_{2}$ on $(-\pi, \pi)$ and

$$
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

then

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)(\log n)^{-1 / 2} \tag{1}
\end{equation*}
$$

converges almost everywhere on $(-\pi, \pi)$. We designate the set where (1) converges by $E(P l, f)$. This set is then known to be of measure 2π. The sets $E(F, f)$, consisting of the points where

$$
\phi(t)=f(x+t)+f(x-t)-2 f(x) \rightarrow 0, \text { as } t \rightarrow 0
$$

and $E(L, f)$, consisting of the points where

$$
\Phi(t)=\int_{0}^{t}|\phi(\tau)| d \tau=o(t), \text { as } t \rightarrow 0
$$

are of much importance in the theory of Fourier series. The set $E(L, f)$ is known to be of measure 2π for all integrable functions. It is obvious that

$$
E(F, t) \subset E(L, f)
$$

We propose in this note to investigate the inclusion relationships between these sets and $E(P l, f)$. We shall prove

$$
\begin{equation*}
E(F, f) \nsubseteq E(P l, f) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
E(P l, f) \nsubseteq E(L, f) \tag{3}
\end{equation*}
$$

We first consider (2). Plessner § showed that, if (1) converges,

