SHORTER NOTICES

second "key," multiples of 5 again being thrown out as they arise. This method, applicable to any square of prime order, will, however, not always work when the order of the square is composite. The squares obtained by it are more easily obtained by the "uniform step" method, a complete theory of which has been worked out in a paper apparently not known to the author published in the Transactions of this Society in 1930 (vol. 31, No. 3, pp. 529–551).

Although the method of "numeral series" is of no great importance for the problem of ordinary squares, it yields extraordinary results when applied to "hypermagic squares," that is, squares which are magic in the squares of the elements or in the cubes of the elements. Thus for squares of order p^2 , squares magic in the squares of the elements are obtained, and trimagic squares are also obtained, that is, magic in the cubes of the elements. The smallest bimagic square given is of order 8 and the smallest trimagic square of order 128. The method of construction does not seem to indicate whether bimagic squares of order less than eight are possible. It is not difficult to prove that squares of order 1 conditions of the reviewer hopes to answer that question before long.

D. N. Lehmer

Einführung in die Differentialrechnung und Integralrechnung. By Edmund Landau. Groningen-Batavia, P. Noordhoff N. V., 1934. 368 pp.

The reviewer's task of reporting on this book is considerably simplified by the fact that it has already been reviewed in the American Mathematical Monthly (Nov., 1934). Presumably Professor Ritt's review has been seen by most of the readers of the Bulletin, but the novelty of this work seems to justify some further comment.

The book is confined solely to the analytical parts of calculus; neither are there any problems for the student to work, nor are there the familiar applications to geometry and mechanics. The author's aim is to present the theory "in exacter und lückenloser Weise." Your reviewer will not appraise the author's success in this endeavor by searching for slips in rigor, but will confine his remarks to points likely to be of interest to the teacher of calculus.

A knowledge of the fundamental rules of algebra is presupposed. These are set forth in the introduction, which also contains the notion of the Dedekind cut, the necessary theorems on finite and infinite sets of numbers, and a proof of the existence of $a^{1/n}$ for $a \ge 0$ and n integral. This last, however, is used only for n=2.

Chapter 1 contains the usual definitions and theorems on the limit of a sequence. Since the student is supposed to know merely the meaning of a^n for n a positive or negative integer or zero and the existence of $a^{1/n}$ for $a \ge 0$, it is necessary in Chapter 2 to develop the whole theory of logarithms and exponentials. We find log x defined as $\lim_{n\to\infty} k(x^{1/k}-1)$, where $k=2^n$. The existence and usual properties of logarithms are then deduced. The constant e is now defined as the solution of log y=1, e^x as the solution of log y=x, and $a^x=e^{x\log a}$ for a > 0. The usual theory of exponentials readily follows with unusual brevity.

Chapters 3, 4, and 8 deal with functions, continuity, and limits of functions.

1935.]