AN INVOLUTORIAL LINE TRANSFORMATION DETERMINED BY A BILINEAR CONGRUENCE OF TWISTED ELLIPTIC QUARTIC CURVES*

BY VIrgil sNyder and J. M. CLARKSON

1. Introduction. Let there be given two elliptic space quartic curves α, β, bases, respectively, of the two pencils of quadrics $H_{1}-\alpha H_{2}=0$, and $K_{1}-\beta K_{2}=0$. The curve $C_{4}(\alpha, \beta)$ of intersection of a quadric of one pencil with one of the other meets each of α, β in 8 points. As the parameters α, β take on all values independently, $C_{4}(\alpha, \beta)$ describes a system of ∞^{2} (a congruence of) elliptic space quartics. Through an arbitrary point (u) passes just one $C_{4}(\alpha, \beta)$, namely that for which $\alpha=H_{1}(u) / H_{2}(u)$ and $\beta=K_{1}(u) / K_{2}(u)$.

A quadric of the system

$$
\begin{equation*}
\left(H_{1}-\alpha H_{2}\right)-\rho\left(K_{1}-\beta K_{2}\right)=0 \tag{1}
\end{equation*}
$$

is determined by three independent linear relations among α, β, ρ, hence by any three points of space. If these three points be chosen on a straight line t, then the quadric of (1) determined by the three points contains t as a generator. Thus t is a bisecant of every elliptic quartic lying on the quadric. But the values of α, β so determined fix a $C_{4}(\alpha, \beta)$ of the congruence and it lies on the quadric of (1). Hence an arbitrary line t of space is bisecant to just one $C_{4}(\alpha, \beta)$.

Now, let $\gamma \equiv \sum_{i=1}^{4} c_{i} z_{i}=0$ be an arbitrary fixed plane. Any line t meets γ in a point P. The quadric $Q(t)$ of (1) which contains t as a generator has another generator t^{\prime} also passing through P, and t^{\prime} is likewise bisecant to the $C_{4}(\alpha, \beta)$ determined by t. The line transformation $t \sim t^{\prime}$ is involutorial and birational. It is the purpose of this paper to study this involution I. \dagger

[^0]
[^0]: * Presented to the Society, March 30, 1934.
 \dagger A brief synthetic outline, mostly without proofs, of parts of this paper is given by J. de Vries: On an involution among the rays of space, which is determined by a bilinear congruence of twisted elliptical quartics, Proceedings Koninklijke Akademie van Wetenschappen te Amsterdam, vol. 22 (1919), pp. 493-496.

