AN INVOLUTORIAL LINE TRANSFORMATION DE-TERMINED BY A BILINEAR CONGRUENCE OF TWISTED ELLIPTIC QUARTIC CURVES*

BY VIRGIL SNYDER AND J. M. CLARKSON

1. Introduction. Let there be given two elliptic space quartic curves α , β , bases, respectively, of the two pencils of quadrics $H_1 - \alpha H_2 = 0$, and $K_1 - \beta K_2 = 0$. The curve $C_4(\alpha, \beta)$ of intersection of a quadric of one pencil with one of the other meets each of α, β in 8 points. As the parameters α , β take on all values independently, $C_4(\alpha, \beta)$ describes a system of ∞^2 (a congruence of) elliptic space quartics. Through an arbitrary point (u) passes just one $C_4(\alpha, \beta)$, namely that for which $\alpha = H_1(u)/H_2(u)$ and $\beta = K_1(u)/K_2(u)$.

A quadric of the system

(1)
$$(H_1 - \alpha H_2) - \rho(K_1 - \beta K_2) = 0$$

is determined by three independent linear relations among α , β , ρ , hence by any three points of space. If these three points be chosen on a straight line *t*, then the quadric of (1) determined by the three points contains *t* as a generator. Thus *t* is a bisecant of every elliptic quartic lying on the quadric. But the values of α , β so determined fix a $C_4(\alpha, \beta)$ of the congruence and it lies on the quadric of (1). Hence an arbitrary line *t* of space is bisecant to just one $C_4(\alpha, \beta)$.

Now, let $\gamma \equiv \sum_{i=1}^{4} c_i z_i = 0$ be an arbitrary fixed plane. Any line t meets γ in a point P. The quadric Q(t) of (1) which contains t as a generator has another generator t' also passing through P, and t' is likewise bisecant to the $C_4(\alpha, \beta)$ determined by t. The line transformation $t \sim t'$ is involutorial and birational. It is the purpose of this paper to study this involution I.[†]

^{*} Presented to the Society, March 30, 1934.

[†] A brief synthetic outline, mostly without proofs, of parts of this paper is given by J. de Vries: On an involution among the rays of space, which is determined by a bilinear congruence of twisted elliptical quartics, Proceedings Koninklijke Akademie van Wetenschappen te Amsterdam, vol. 22 (1919), pp. 493-496.