A CYCLIC INVOLUTION OF ORDER SEVEN

BY W. R. HUTCHERSON

1. Introduction. In an earlier paper, \dagger the writer discussed a cubic surface in ordinary three way space containing an involution of order five, I_{5}. This paper concerns itself with a different cubic surface which contains a cyclic involution, I_{7}.
2. Discussion of I_{7} Belonging to F_{3} in S_{3}. Consider the surface

$$
F_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \equiv a x_{2}^{2} x_{3}+b x_{3}^{2} x_{1}+c x_{1} x_{2} x_{4}=0
$$

in S_{3}, invariant under the cyclic collineation T of order seven

$$
x_{1}^{\prime}: x_{2}^{\prime}: x_{3}^{\prime}: x_{4}^{\prime}=x_{1}: \epsilon x_{2}: \epsilon^{2} x_{3}: \epsilon^{3} x_{4}, \quad\left(\epsilon^{7}=1\right)
$$

There are four invariant points, $P_{1} \equiv(1,0,0,0), P_{2} \equiv(0,1,0,0)$, $P_{3} \equiv(0,0,1,0)$, and $P_{4} \equiv(0,0,0,1)$. Each lies on the surface F, and since these are the only possible invariant points, the surface F has only four points of coincidence. It will be noticed, however, that only P_{2} and P_{3} are simple points of F. Hence this paper will not be interested in the two double invariant points, P_{1} and P_{4}.

Consider a curve C, not transformed into itself by T, and passing through P_{2}. Take the plane $x_{3}+\lambda x_{4}=0$ of the pencil passing through P_{2} and P_{1}, tangent to C. This plane is transformed into

[^0]
[^0]: P28 and its equivalent P6 are regarded as part of the "formal" theory; but both may be omitted, if preferred, without prejudice to the other postulates.)

 What is perhaps the most obvious example of a "formal Principia system with equality" is the system ($K, C,+,^{\prime},=$) obtained from Example 0.4 by changing the word "correct" to "truistic." The resulting example satisfies all the Postulates P1-P6, P8-P11, but fails on P7 (since there are verdicts a such that neither a nor a^{\prime} is a "truistic" verdict).

 Thus the distinction between an "informal Principia system with equality" and a "formal Principia system with equality" depends on the inclusion or rejection of Postulate P7.

 It is important to observe, however, that another, equally good, example of a "formal Principia system with equality" is the system obtained from Example 0.5 by changing the word "incorrect" to "absurd." The mathematical postulates by themselves give no precedence to the "truistic-or" interpretation over the "absurd-and" interpretation.
 \dagger W. R. Hutcherson, Maps of certain cyclic involutions on two-dimensional carriers, this Bulletin, vol. 37 (1931), pp. 759-765.

