[December,

ON CUBIC CONGRUENCES*

BY H. R. BRAHANA

1. Introduction. In the consideration of metabelian groups G of order p^{n+3} which contain a given abelian group H of order p^n and type 1, 1, \cdots , there enters an irreducible cubic congruence

(1)
$$x^3 + \gamma x^2 - \alpha x + \beta \equiv 0, \pmod{p}.$$

It is necessary to determine how many congruences (1) are distinct under certain transformations on the generators of $G.\dagger$

Let the generators of H be s_1, s_2, \cdots, s_n , and let U_1, U_2, U_3 be three operators of order p from the group of isomorphisms of H. Let the operators s_1, \cdots, U_3 be permutable except for the relations

(2)
$$U_1^{-1}s_1U_1 = s_1s_3, U_2^{-1}s_1U_2 = s_1s_5, U_3^{-1}s_1U_3 = s_1s_3^{\alpha}s_4^{\beta}s_5^{\gamma}, U_1^{-1}s_2U_1 = s_2s_4, U_2^{-1}s_2U_2 = s_2s_3, U_3^{-1}s_2U_3 = s_2s_5.$$

Such operators U_1 , U_2 , U_3 obviously exist. The condition that $\{U_1, U_2, U_3\}$ contain no operator permutable with any operator, except identity, of $\{s_1, s_2\}$ is readily seen to be that (1) be irreducible, (mod p).

The group $G = \{H, U_1, U_2, U_3\}$ is a subgroup of the holomorph of H. For the sake of simplicity in the subsequent computations we shall show that generators of G may be chosen so that $\gamma = 0$, provided p > 3. Let $s_1' = s_1 s_2^{-1}$, $U_2' = U_1^{-1} U_2$, and U_3' $= U_1 U_2^{-2} U_3$. The operators s_1', s_2, \cdots, s_n , U_1, U_2', U_3' generate G, and satisfy (2) with new numbers α', β', γ' , where

$$\begin{aligned} \alpha' &= 2\gamma + \alpha - 3, \\ \beta' &= \alpha + \beta + \gamma - 1, \\ \gamma' &= \gamma - 3. \end{aligned}$$

Hence by repeating this transformation we may reduce γ to

^{*} Presented to the Society, October 28, 1933.

 $[\]dagger$ See my paper, On the metabelian groups which contain a given group H as a maximal invariant abelian subgroup. This paper has been offered to the American Journal of Mathematics.