SIMILAR SEQUENCES

BY E. T. BELL

1. Similarity. The interesting reciprocity between the Eulerian numbers E and the pseudo-Eulerian numbers E^{\prime} of Pascal,* which was noticed by Sinigallia, \dagger is not a peculiarity of the particular sequences E, E^{\prime}, but is a simple instance of a general property of all sequences of numbers or of polynomials. According to this property, defined below and called similarity, any sequence is similar to an infinity of other sequences; there is no special reason for singling E^{\prime} out of all the sequences similar to E.

Let $S \equiv S_{n}, S^{\prime} \equiv S_{n}^{\prime},(n=0,1, \cdots)$, be any sequences such that

$$
S_{n}=f_{n}\left(S_{0}^{\prime}, S_{1}^{\prime}, \cdots\right), \quad S_{n}^{\prime}=f_{n}\left(S_{0}, S_{1}, \cdots\right)
$$

for all integers $n \geqq 0$, so that the nth element S_{n} of S is the same function f_{n} of elements of S^{\prime} that S_{n}^{\prime} is of elements of S. We shall say that S, S^{\prime} are similar, and write $S \sim S^{\prime}$, and hence also $S^{\prime} \sim S$.

Let $S \sim S^{\prime}$, and let the relation, in symbolic or umbral notation, which enables us to express the elements of either of S, S^{\prime} as functions of the elements of the other, be $R\left(S, S^{\prime}\right)=0$. If $R\left(S, S^{\prime}\right)$ is bilinear in the elements of S, S^{\prime}, we shall say that S, S^{\prime} are bilinearly similar. It will be shown in $\S 2$ that all the S^{\prime} bilinearly similar to any given S constitute a three-parameter family of sequences.

As an example, we state the difference equation which defines all E^{\prime} bilinearly similar to Euler's E, using for E the notation of Lucas. \ddagger

[^0]
[^0]: * E. Pascal, Rendiconti del R. Istituto Lombardo, (2), vol. 40 (1907), pp. 461-475.
 \dagger L. Sinigallia, Rendiconti di Palermo, vol. 24 (1907), pp. 222-228.
 \ddagger E. Lucas, Théorie des Nombres, Chap. 14. Sinigallia's $E_{2 n}$ is Lucas' $(-1)^{n} E_{2 n}$. It is a great convenience in using the symbolic method to fill any gaps that may occur in a given sequence with zeros, so that the index ranges over all integers $n \geqq 0$, adding a supplementary definition to give the positions of the interpolated zeros. Thus Sinigallia's $E_{2 n}$ and Pascal's $E_{2 n}{ }^{\prime},(n=0,1, \cdots)$, would be replaced by $E_{n}, E_{n}^{\prime},(n=0,1, \cdots)$, with the supplementary defini-

