ON THE SUMMABILITY AND GENERALIZED SUM OF A SERIES OF LEGENDRE POLYNOMIALS*

BY w. C. BRENKE

1. Introduction. The results obtained in this paper are as follows.
(A) The series of Legendre polynomials $\sum n^{p} X_{n}(x)$, where p is a positive integer, is summable (H, p) for $-1<x<1$, and summable $(H, p+1)$ for $-1 \leqq x<1$.
(B) The generalized sum over the range $-1<x<1$ is

$$
\sum_{1}^{\infty} n^{p} X_{n}(x)=-\frac{1}{2(2 y)^{p-1 / 2}}\left|\begin{array}{ccccccc}
2 & 0 & 0 & 0 & \cdots & 0 & 1 \\
y & 2 y & 0 & 0 & \cdots & 0 & 1 \\
A_{2}^{3} & y & 2 y & 0 & \cdots & 0 & 1 \\
A_{3}^{4} & A_{2}^{4} & y & 2 y & \cdots & 0 & 1 \\
\vdots & \vdots & & & . & \vdots \\
\vdots & . & & & . & . \\
A_{p-2}^{p-1} & A_{p-3}^{p-1} \cdots & y & 2 y & 1 \\
A_{p-1}^{p} & A_{p-2}^{p} \cdots & A_{2}^{p} & y & 1
\end{array}\right|
$$

where

$$
y=1-x ; \quad A_{t}^{p}={ }_{p} C_{t}+(-1)^{t}{ }_{p-1} C_{t} ; \quad(p>2) .
$$

2. The Cases $p=0,1,2$. We first obtain these results for $p=0$, 1,2 . Let p be a positive integer, $S_{n, p}$ the sum of the first n terms of the series $\sum n^{p} X_{n}(x), S_{n, p}^{(p)}$ the p th Hölder mean of $S_{n, p}$, and $S^{(p)}$ the limit of this mean for $n \rightarrow \infty$.

The generating function of the Legendre polynomials gives us at once the sum of the convergent series
(1) $\sum_{1}^{\infty} X_{n}(x)=S^{(0)}=[2(1-x)]^{-1 / 2}-1, \quad(-1<x<1)$.

We can readily find $S^{(1)}$ by use of the recursion formula

$$
\begin{equation*}
(2 m+1) x X_{m}=(m+1) X_{m+1}+m X_{m-1} \tag{2}
\end{equation*}
$$

[^0]
[^0]: * Presented to the Society, November 26, 1932.

