alizes the theorem of Thompson and Tait. We can prove, in fact, that a condition for an affirmative answer to our question is that, on any tube of (S), either all or none of the transversal curves should be closed.

TRINITY COLLEGE, DUBLIN, IRELAND

ON THE CONDITION THAT TWO ZEHFUSS MATRICES BE EQUAL

BY D. E. RUTHERFORD

1. Introduction. In a recent paper* Williamson has considered matrices whose sth compounds are equal. The present paper considers the somewhat analogous problem of finding the conditions that two Zehfuss matrices be equal.

Suppose that R is a matrix of n_1 rows and m_1 columns whose ijth element is r_{ij} , and that P is another matrix of n_2 rows and m_2 columns. Now, if the matrix Q of n_1n_2 rows and m_1m_2 columns can be partitioned into submatrices each of n_2 rows and m_2 columns such that the ijth submatrix is $r_{ij}P$, then Q is a Zehfuss matrix \dagger or the direct product matrix \dagger of R and P. We shall write

$$Q = R\langle P \rangle = \langle P \rangle R.$$

In general, however, $R\langle P \rangle \neq \langle P \rangle R$.

It is the purpose of this paper to find out under what conditions the matrix equation

$$A\langle B\rangle = C\langle D\rangle$$

is true. That is, we shall find the most general form of the matrices A, B, C, D when the above equation holds.

2. The Simplest Case. We shall begin by considering the simplest case, where A, B, C, D are row vectors, where A and D are of order m_1 , where B and C are of order m_2 , and where

$$(m_1, m_2) = 1;$$

that is to say, m_1 and m_2 are prime to one another. Suppose that

^{*} J. Williamson, this Bulletin, vol. 39 (1933), p. 109.

[†] G. Zehfuss, Zeitschrift für Mathematik und Physik, vol. 3 (1858), p. 298.

[‡] L. E. Dickson, Algebras and Their Arithmetics, p. 119.