alizes the theorem of Thompson and Tait. We can prove, in fact, that a condition for an affirmative answer to our question is that, on any tube of (S), either all or none of the transversal curves should be closed. TRINITY COLLEGE, DUBLIN, IRELAND ## ON THE CONDITION THAT TWO ZEHFUSS MATRICES BE EQUAL ## BY D. E. RUTHERFORD 1. Introduction. In a recent paper* Williamson has considered matrices whose sth compounds are equal. The present paper considers the somewhat analogous problem of finding the conditions that two Zehfuss matrices be equal. Suppose that R is a matrix of n_1 rows and m_1 columns whose ijth element is r_{ij} , and that P is another matrix of n_2 rows and m_2 columns. Now, if the matrix Q of n_1n_2 rows and m_1m_2 columns can be partitioned into submatrices each of n_2 rows and m_2 columns such that the ijth submatrix is $r_{ij}P$, then Q is a Zehfuss matrix \dagger or the direct product matrix \dagger of R and P. We shall write $$Q = R\langle P \rangle = \langle P \rangle R.$$ In general, however, $R\langle P \rangle \neq \langle P \rangle R$. It is the purpose of this paper to find out under what conditions the matrix equation $$A\langle B\rangle = C\langle D\rangle$$ is true. That is, we shall find the most general form of the matrices A, B, C, D when the above equation holds. 2. The Simplest Case. We shall begin by considering the simplest case, where A, B, C, D are row vectors, where A and D are of order m_1 , where B and C are of order m_2 , and where $$(m_1, m_2) = 1;$$ that is to say, m_1 and m_2 are prime to one another. Suppose that ^{*} J. Williamson, this Bulletin, vol. 39 (1933), p. 109. [†] G. Zehfuss, Zeitschrift für Mathematik und Physik, vol. 3 (1858), p. 298. [‡] L. E. Dickson, Algebras and Their Arithmetics, p. 119.