alizes the theorem of Thompson and Tait. We can prove, in fact, that a condition for an affirmative answer to our question is that, on any tube of (S), either all or none of the transversal curves should be closed.

Trinity College,
Dublin, Ireland

ON THE CONDITION THAT TWO ZEHFUSS MATRICES BE EQUAL

BY D. E. RUTHERFORD

1. Introduction. In a recent paper* Williamson has considered matrices whose s th compounds are equal. The present paper considers the somewhat analogous problem of finding the conditions that two Zehfuss matrices be equal.

Suppose that R is a matrix of n_{1} rows and m_{1} columns whose $i j$ th element is $r_{i j}$, and that P is another matrix of n_{2} rows and m_{2} columns. Now, if the matrix Q of $n_{1} n_{2}$ rows and $m_{1} m_{2}$ columns can be partitioned into submatrices each of n_{2} rows and m_{2} columns such that the $i j$ th submatrix is $r_{i j} P$, then Q is a Zehfuss matrix \dagger or the direct product matrix \ddagger of R and P. We shall write

$$
Q=R\langle P\rangle=\langle P\rangle R
$$

In general, however, $R\langle P\rangle \neq\langle P\rangle R$.
It is the purpose of this paper to find out under what conditions the matrix equation

$$
A\langle B\rangle=C\langle D\rangle
$$

is true. That is, we shall find the most general form of the matrices A, B, C, D when the above equation holds.
2. The Simplest Case. We shall begin by considering the simplest case, where A, B, C, D are row vectors, where A and D are of order m_{1}, where B and C are of order m_{2}, and where

$$
\left(m_{1}, m_{2}\right)=1
$$

that is to say, m_{1} and m_{2} are prime to one another. Suppose that

[^0]
[^0]: * J. Williamson, this Bulletin, vol. 39 (1933), p. 109.
 \dagger G. Zehfuss, Zeitschrift für Mathematik und Physik, vol. 3 (1858), p. 298.
 \ddagger L. E. Dickson, Algebras and Their Arithmetics, p. 119.

