ON THE NUMBER OF APPARENT DOUBLE POINTS ON A CERTAIN V_{k}^{n} IN AN S_{2k+1}

BY B. C. WONG

Consider a k-dimensional variety, V_{k}^{n} , of order *n* which is the locus of a single infinity of (k-1)-spaces in an S_{2k+1} . It is known that such a V_{k}^{n} , if it is rational, that is, if its section by a general S_{k+2} of S_{2k+1} is a rational curve, has*

$$b_k = \frac{1}{2}(n-k)(n-k-1)$$

apparent double points.[†] The question arises: What is the value of b_k when V_k^n is not rational? The case k=1 is familiar; a curve of order n in an S_3 has

(1)
$$b_1 = \frac{1}{2}(n-1)(n-2) - p$$

apparent double points, where p is the deficiency of the curve. It is also known that, for k=2, the number of apparent double points on a ruled surface F^n of order n in an S_5 is‡

(2)
$$b_2 = \frac{1}{2}(n-2)(n-3) - 3p$$
,

where p is the deficiency of the curve of intersection of F^n by a general S_4 of S_5 . For k>2, the number b_k of apparent double points of a V_k^n in an S_{2k+1} seems to be as yet unknown. It is our purpose in this note to derive a formula for this number.

Now let V_{k^n} be intersected by a general S_{k+2} of S_{2k+1} in a curve C^n of deficiency p. If p > 0, we say that V_{k^n} is not rational. We shall say that p is also the deficiency of V_{k^n} and shall regard n and p as the two essential characteristics of the variety as all its other characteristics can be expressed in terms of them for a

^{*} B. C. Wong, On the number of (q+1)-secant S_{q-1} 's of a certain V_k^n in an $S_{qk+q+k+1}$, this Bulletin, vol. 39, pp. 392–394.

[†] By an apparent double point of a V_k^n we mean a secant line of V_k^n passing through a given point of S_{2k+1} . The projection in an S_{2k} of V_k^n will have b_k improper double points each of which is the projection of an apparent double point of V_k^n .

[‡] Severi, Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni, e a'suoi punti tripli apparenti, Rendiconti di Palermo, vol. 15 (1901), pp. 33-51.