ON THE NUMBER OF APPARENT DOUBLE POINTS ON A CERTAIN V_{k}^{n} IN AN $S_{2 k+1}$

BY B. C. WONG

Consider a k-dimensional variety, V_{k}^{n}, of order n which is the locus of a single infinity of ($k-1$)-spaces in an $S_{2 k+1}$. It is known that such a V_{k}^{n}, if it is rational, that is, if its section by a general S_{k+2} of $S_{2 k+1}$ is a rational curve, has*

$$
b_{k}=\frac{1}{2}(n-k)(n-k-1)
$$

apparent double points. \dagger The question arises: What is the value of b_{k} when V_{k}^{n} is not rational? The case $k=1$ is familiar; a curve of order n in an S_{3} has

$$
\begin{equation*}
b_{1}=\frac{1}{2}(n-1)(n-2)-p \tag{1}
\end{equation*}
$$

apparent double points, where p is the deficiency of the curve. It is also known that, for $k=2$, the number of apparent double points on a ruled surface F^{n} of order n in an S_{5} is \ddagger

$$
\begin{equation*}
b_{2}=\frac{1}{2}(n-2)(n-3)-3 p \tag{2}
\end{equation*}
$$

where p is the deficiency of the curve of intersection of F^{n} by a general S_{4} of S_{5}. For $k>2$, the number b_{k} of apparent double points of a $V_{k}{ }^{n}$ in an $S_{2 k+1}$ seems to be as yet unknown. It is our purpose in this note to derive a formula for this number.

Now let V_{k}^{n} be intersected by a general S_{k+2} of $S_{2 k+1}$ in a curve C^{n} of deficiency p. If $p>0$, we say that $V_{k}{ }^{n}$ is not rational. We shall say that p is also the deficiency of V_{k}^{n} and shall regard n and p as the two essential characteristics of the variety as all its other characteristics can be expressed in terms of them for a

[^0]
[^0]: * B. C. Wong, On the number of ($q+1$)-secant S_{q-1} 's of a certain V_{k}^{n} in an $S_{q k+q+k+1}$, this Bulletin, vol. 39, pp. 392-394.
 \dagger By an apparent double point of a V_{k}^{n} we mean a secant line of V_{k}^{n} passing through a given point of $S_{2 k+1}$. The projection in an $S_{2 k}$ of V_{k}^{n} will have b_{k} improper double points each of which is the projection of an apparent double point of V_{k}^{n}.
 \ddagger Severi, Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni, e a'suoi punti tripli apparenti, Rendiconti di Palermo, vol. 15 (1901), pp. 33-51.

