INTEGRAL FUNCTIONS OBTAINED BY COMPOUNDING POLYNOMIALS*

BY J. F. RITT

1. Introduction. We consider a sequence of polynomials $P_{n}(z),(n=1,2, \cdots)$, where the degrees of the P_{n} do not exceed a fixed integer m and where each P_{n}, ordered in ascending powers of z, starts with the term z. We shall study the sequence of polynomials $Q_{n}(z)$ defined by

$$
\begin{equation*}
Q_{1}(z)=P_{1}(z) ; Q_{n+1}(z)=Q_{n}\left[P_{n+1}(z)\right], \quad(n=1,2, \cdots) \tag{1}
\end{equation*}
$$

and also the sequence of polynomials $R_{n}(z)$ defined by

$$
\begin{equation*}
R_{1}(z)=P_{1}(z) ; R_{n+1}(z)=P_{n+1}\left[R_{n}(z)\right], \quad(n=1,2, \cdots) \tag{2}
\end{equation*}
$$

If the coefficients, after the first, in P_{n}, are sufficiently small, these sequences will converge to integral functions. For instance, $\sin z$ can be obtained, in many ways, as a limit of a sequence (1). In what follows, our chief object will be to establish conditions under which the sequences converge to integral functions.
2. The Sequence of $Q_{n}(z)$. Let

$$
P_{n}(z)=z+a_{n 2} z^{2}+\cdots+a_{n m} z^{m}, \quad(n=1,2, \cdots)
$$

where m is an integer independent of n.
Theorem 1. Let a convergent series of positive numbers,

$$
\begin{equation*}
c_{1}+c_{2}+\cdots+c_{n}+\cdots, \tag{3}
\end{equation*}
$$

exist such that $\left|a_{n i}\right|<c_{n}$, for every n and for $i=2, \cdots, m$. Then the sequence of polynomials $Q_{n}(z)$ converges to an integral function, the convergence being uniform in every bounded domain.

Proof. For every n,

$$
\begin{equation*}
U_{n}(z)=z+c_{n}\left(z^{2}+\cdots+z^{m}\right) \tag{4}
\end{equation*}
$$

is a majorant of $P_{n}(z)$. Let

$$
V_{1}=U_{1} ; V_{n+1}=V_{n}\left(U_{n+1}\right), \quad(n=1,2, \cdots)
$$

[^0]
[^0]: * Presented to the Society, April 14, 1933.

