There exists a metric space S in which Axioms 1, 3, 4, and 5' hold true, but such that *S* is not completely separable. Hence it does not follow that a space *S* in which Axioms 1, 3, 4, and 5' hold true is a subset of a plane, even if it is assumed that S is metric.

DUKE UNIVERSITY

ANALOGS OF THE STEINER SURFACE AND THEIR DOUBLE CURVES*

BY A. R. WILLIAMS

The equations x_1 : x_2 : x_3 : $x_4 = x^n$: y^n : z^n : w^n , where *x*, *y*, *z*, *w* are linear functions of three homogeneous parameters, represent a rational surface of order n^2 . For $n = 2$ we have the well known Steiner surface. The particular subject of this paper is the double curve of such a surface and its representation on the plane. A few general properties must first be mentioned.

We take in the plane the reference system $x = 0$, $y = 0$, $z = 0$, and $x+y+z=-w=0$. The diagonals of the quadrilateral are $x + y = -z - w = 0$, etc. The vertices of the diagonal triangle are $(1:1:-1:-1), (1:-1:1:-1), (1:-1:-1:1),$ the fourth coordinate being *w.* Corresponding to the diagonals, the surface has 3 multiple right lines of order *n,* each meeting two opposite edges of the tetrahedron in points which correspond to a pair of opposite vertices of the quadrilateral. If *n* is even, the multiple lines are concurrent at (1:1:1:1), which is a point of order $3(n-1)$ for the surface, corresponding to the vertices of the diagonal triangle and to certain pairs of imaginary points when $n>2$. If *n* is odd, the multiple lines are not concurrent, but are coplanar, meeting two by two at 3 points corresponding to the vertices of the diagonal triangle. The intersection of two multiple lines is then a point of order $2n - 1$ for the surface. The class of the surface is always $3(n-1)^2$. The only pinch points are the 6 in which the multiple lines meet the edges of the tetrahedron. Each coordinate plane contains a single curve of order *n,* and is tangent to the surface along that curve, the order of contact being $n-1$. When *n* is even the section by a plane through a multiple line meets it in one variable real point, and

^{*} Presented to the Society, March 18, 1933.